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ABOUT DEPARTMENT
4 Established in: 2013
¢ Course offered: B.Tech Mechatronics Engineering
4 Approved by AICTE New Delhi and Accredited by NAAC

4 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To develop professionally ethical and socially responsible Mechatronics engineers to serve the
humanity through quality professional education.

DEPARTMENT MISSION

1) The department is committed to impart the right blend of knowledge and quality
education to create professionally ethical and socially responsible graduates.

2) The department is committed to impart the awareness to meet the current challenges in
technology.

3) Establish state-of-the-art laboratories to promote practical knowledge of mechatronics to
meet the needs of the society

PROGRAMME EDUCATIONAL OBJECTIVES

l. Graduates shall have the ability to work in multidisciplinary environment with good
professional and commitment.

. Graduates shall have the ability to solve the complex engineering problems by applying
electrical, mechanical, electronics and computer knowledge and engage in lifelong learning in
their profession.

1. Graduates shall have the ability to lead and contribute in a team with entrepreneur skills,
professional, social and ethical responsibilities.

IV.  Graduates shall have ability to acquire scientific and engineering fundamentals necessary
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for higher studies and research.

PROGRAM OUTCOME (PO’S)
Engineering Graduates will be able to:

PO 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO 2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO 3. Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO 4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO 7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
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norms of the engineering practice.

PO 9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO 11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME(PSO’S)

PSO 1: Design and develop Mechatronics systems to solve the complex engineering problem by

integrating electronics, mechanical and control systems.

PSO 2: Apply the engineering knowledge to conduct investigations of complex engineering

problem related to instrumentation, control, automation, robotics and provide solutions.
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COURSE OUTCOME

After the completion of the course the student will be able to

Co1 Acquire knowledge about the basic concepts of stress and strain in solids
CO2 Identify and apply the methodologies to analyze stresses and strains at a point
CO3 Understand the concepts of torsion in elastic circular bars

CO4 Interpret about the concepts of stresses in beams

CO5 Identify the concepts of shear force and bending moment in beams

CO6 Understand about stresses in springs and columns with different conditions
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SYLLABUS

Course Plan

Module

Contents

Hours

Sem. Exam
Marks

Simple Stress and Stramn: Introduction to analysis of
deformable bodies — internal forces — method of sections —
assumptions and limitations. Simple stresses — stresses due to
normal- shear and bearing loads — strength design of simple
members. Definition of linear and shear stramns- Matenal
behavior-stress-strain diagrams.

15%

Hooke’s law for linearly elastic 1sotropic material under axial
and shear deformation — deformation in axially loaded bars—
statically indeterminate problems — principle of superposition.
Elastic strain energy for uniaxial stress. Definition of stress and
strain at a point (introduction to stress and strain tensors and 1ts
components only) — Poisson’s ratio — biaxial deformations —
Bulk modulus - Relations between elastic constants.

15%

Torsion: Torsion theory of elastic circular bars — assumptions
and limitations — torsional rigidity — economic cross-sections —
statically indeterminate problems — shaft design for torsional
load.

15%

v

Stresses in beams: Pure bending — flexure formula for beams —
assumptions and limitations — section modulus - flexural
rigidity - economic sections — beam of uniform strength.
Shearing stress formula for beams — assumptions and
limitations.

15%

Axial force- shear force and bending moment: Diagrammatic
conventions for supports and loading - axial force- shear force
and bending moment in a beam — differential relations between
load- shear force and bending moment - shear force and
bending moment diagrams by direct and summation approach —
elastic curve — point of inflection.

20%

VI

Types of springs- stiffness stresses and deflection in helical
spring and leaf spring. Columns — Buckling and stiffness due to
axial loads — Euler- Rankin and Empirical formulae for
columns with different conditions.

20%
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QUESTION BANK

MODULE I
Q:NO: QUESTIONS CO KL | PAGE NO:

1 Explain different types of stresses Co1 K1 11
2 Write in detail about longitudinal stress and strain Co1 K2 15
3 Problems related to stress Co1 K5 16
4 Derive a formula for strain in bars of varying c/s COo1 K6 20
5 Write a short note on Principle of Superposition CO1 K1 24
6 Problems related to superposition theorem Co1 K5 25
7 Problems related to superposition Co1 K6 31

theorem,stress,strain
8 Discuss about method of sections Co1 K2 34
9 Write a short note on Hooke’s Law COo1 K1 40
10 Discuss about stress-strain curve in ductile & brittle Co1 K2 41

materials

MODULE Il

1 Discuss about stress and strain tensor CO2 K2 47
2 Write a short note on resilience, proof resilience CO2 K1 49
3 What is strain energy CO2 K1 49
4 Derive an equation for strain energy when load is CO2 K6 50

applied gradually
5 Derive an equation for strain energy when load is CO2 K6 51

applied suddenly
6 Problems on strain energy CO2 K5 52
7 Write down the relation between elastic constants CO2 K1 56
8 Problems on elastic constants CO2 K5 57
9 Problems on strain energy, elastic constants CO2 K5 59
10 Write a short note on statically indeterminate CO2 K1 60

structures

7
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MODULE I11
1 Derive an equation for shear stress in circular shafts CO3 K6 65
2 Assumptions in derivation of shear stress equation CO3 K1 67
3 Derive an equation for torque in a solid shaft CO3 K6 67
4 Derive an equation for torque in a hollow shaft COs3 K6 69
5 Problems related to torque CO3 K5 70
6 Torque in terms of polar moment of inertia CO3 K6 77
7 What is polar modulus CO3 K1 78
8 Explain about strength of a shaft CO3 K2 78
9 Discuss about torsional rigidity CO3 K2 78
10 Problems on torsion CO3 K5 79

MODULE IV
1 Explain about theory of simple bending CO4 K2 81
2 Derive an expression for bending stress CO4 K6 82
3 Discuss about neutral axis and moment of resistance CO4 K1 83
4 Problems based on bending stress CO4 K5 86
5 Discuss about section modulus CO4 K2 88
6 Explain about shear stress in beams CO4 K1 95
7 Derivation for shear stress in beams CO4 K6 95
8 Problems based on section modulus CO4 K5 97
9 Problems based on shear stress CO4 K5 98
10 Problems based on isosceles triangle CO4 K5 99

MODULE V
1 Types of beams CO5 K1 102
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2 Types of loads CO5 K1 103
3 Discuss about sign conventions for SFD & BMD CO5 K2 104
4 Discuss about SFD & BMD in cantilever beam CO5 K2 106
5 Discuss about SFD & BMD in cantilever beam CO5 K2 109
carrying UDL
6 Problems related to cantilever beam CO5 K5 110
7 Discuss about SFD & BMD in simply supported CO5 K2 113
beam carrying UDL
8 Problems for finding maxing bending moment CO5 K5 119
9 Problems related to point of contra flexure CO5 K5 121
10 Problems related to SFD and BMD CO5 K5 118
MODULE VI
1 What is a laminated leaf spring CO6 K1 123
2 Expression for central deflection CO6 K6 124
3 Problem related to central deflection CO6 K5 125
4 Discuss about helical spring CO6 K1 126
5 Expression for deflection | a helical spring CO6 K6 127
6 Problems related to helical spring CO6 K5 128
7 How failure of a column takes place CO6 K2 129
8 Discuss about assumptions in column theory CO6 K1 130
9 Expression for crippling load when both the ends of CO6 K6 131
the column are hinged
10 What is meant by equivalent length of a column CO6 K1 132
11 Derive Rankine’s formula CO6 K6 137
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APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO;

TOPIC

PAGE NO:

MOHR’S CIRCLE IN 3D

142
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MODULE 1

STRESS & STRAIN

1.2. STRESS

The foree of resistance per unit area, offered by a body against deformation is l:nuf-m as
stress. The external force acting on the body is called the load or force. The load is apphied on
the body while the stress is induced in the material of the body. A loaded m&mher remains in
equilibrium when the resistance offered by the member against the deformation and the ap-

" plied load are equal.
Mathematically stress is written as, o =
where o = Stress (also called intensity of stress

P = External force or load, and
A = Cross-zectional area.

=~ |

1.3. STRAIN

When a body is subjected to some external force, there is some change of dimension of
the body. The ratio of change of dimension of the body to the original dimension is known as
strain. Strain is dimensionless.

* Btrain may be
1. Tensile strain, 2. Compressive strain,
3. Volumetric strain, and 4, Bhear strain.

If there is some increase in length of a body due to external force, then the ratio of
increase of length to the original length of the body is known as tensile strain. But if there is
some decrease in length of the body, then the ratio of decrease of the length of the body to the
originallength is known as compressive strain. The ratio of change of volume of the body to the
original volume is known as volumetric strain. The strain produced by shear stress is known
as shear strain,

L4. TYPES OF STRESSES

The stress may be normal stress or a shear streas,

Normal stress is the stress which acts in a direction perpendicular to the area. It is
represented by o (sigma). The normal stress is further divided into tensile stress and compressive
stress,

1.4.1. Tensile Stress. The stress induced in a body, when subjected to two equal and
opposite pulls as shown in Fig. 1.1 (a) as a result of which there is an increase in length, is
known as tensile stress. The ratio of increase in length to the original length is known as
tensile strain. The tensile atress acts normal to the area and it pulls on the area.

11
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Let P =Pull {ar force) acting on the bedy,
A = Orooe seotianal area af tha huﬂ.}r,
I. = Original length of the body,
dL = Increasa in length due to pull P acting on the body,
o = Siress induced in the bedy, and
# = Btrain (e, tansile straind,

Fig. 1.1 (a) shows a bar subjectad to & tensila forea P at its ends. Consider a section x-x,
which divides the barinto two parts, The part left to the section x-x, will be in equilibrium if
P = Rasisting force (R). This iz shown in Fig. 1.1 (b). Similarly the part right to the section -z,
will be in equilibrium if F = Resisting faree as shown in Fig. 1.1 (ch. This resizting fores per unit
aren is known as stress or intenaity of stress,

X
P : P
fr— . s
¥ o
F _—
| Ficaksling fore ()
| N e
L
] P
.‘_
Biosling fowe (B - *
+— —
ch
1
P i PP
- H*_._.-I"IH' —
-
! ]
Fig. 1.1

Registing force (R)  Tansile load (F)

X THWIBMHE:'I: - alm- A [._. P=H:|
F
= w11}
or fu} A
And tansile straln is given by,
Incroase in langth  dL 18

® Orighallengs L
142 Compressive Stress. The stress indoced in a body, when subjected to two equal
and opposite pushes as shown in Fig. 1.2 (2) as a result of which there is & decreass in length
of the body, 15 knewn &% compressive stress, And the ratio of decreass in langth to the ariginal
length is kmown a8 compresgive sfirain. The compressive stress acts normal to the area and it
pushes on the arsa.
Let an axial push F is acting on & bedy is cross-sectional area A, Due to external push P,
Tet the original length L of the body decresses by dl..

Department of Mechatronics Engineering, NCERC, Pampady.
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Fig. 1.2

Then compreasive sirass is given by,
Raesisting Force (R} Push (F] _E_
T Aren {A) Area(d) A
And compressive strain is given by,
_ Decrease in length dil

Original langth L

1.4.3. Shear Stress, The stress induced o & body, when snhjected to bwe equal and

opposite forees whi i CrTaRs isting soction as shown in Fig. 1.3
ite fi which are acting tangentially & L mu.hng. 2
as n result of which the hody tenda tn shear off acroas the section, n.:]-:.mm: uah:::ﬂmﬁ T
correspending strain i knewn &3 ahenr strain. The shear siress i the streds

pential ta the aren. It 5 represented by 1.

NN
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L, HOOEE'S LAW AND ELASTIC MODULIT

Hooka's Law states that when a materlal {8 loaded within elastic limit, the strass 1
praportional to the strain produced by the stress. This means the ratio of the stress to the
carrasponding etraln s a constant within the elastic limit, This constant is known as Modulus
of Elasticity or Moduhns of Rigidity or Elastic Modulii.

1.7. MODULUS OF ELASTICTTY (OR YOUNG'S MODULUS)

'I'hé ratio of tenzlle stress o compressive stress to the corresponding sirain 8 a cob-
stant. This tatlo 8 known as Young's Madulus or Modulus of Elastivity nnd is denoted by E.

_ Tonsile stress ar Compressive struss
Tanaila strain Compragsive strain

o a2 ' [18)
[

1.7.1. Modulus of Rigidity or Shear Modulus, The ratie of shear stress to the

corresponding shear strain within the elastic limit, is known as Modulus of Rigidity or Shear
Moduhs, This is denoted by Car & ar N,
Shear stress T '
- - - LA
C {or (7 or N} heur straln § {L.6)

Lt uz define factor of safety also,

LA. FACTOR OF SAFETY

It is defined as the ratio of ultimate tansile stress to the working (or parmisaible) strees.
Mathematically it s written as

Pactor of safity = — A8 Bireee LT

Permigaible stress

1.8, CONSTITUTIVE RELATIONSHIP BETWEEN STRESS AND STRAIN

LA.1. For Ome-Dimensional Stress System. The relationship betwesn shress and
strain for n unidivectional stress (1.¢,, for normal stress in one direction only) is given by Hooke's
lavw, which states that when a material i loaded within its elastic limit, the normal stress
developed iz proportional to the strain produced. This means that the ratio of the normal

Department of Mechatronics Engineering, NCERC, Pampady.
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7 Toneitudinal strain, When a body ia subjocted to an axial tensile load, there is an
inur-u:ulel mhnith of the body. Hutattha;nmnﬁmthmiu decrease in other d.‘u_mna:_rm
of the hody at right engles to the line of setion of the nppli&d_!uai Thus the body is having
axinl defarmation and also deformation at right angles to the line ol action of the applied load
] | deformation}.

e Iﬂxmﬁu of axih] deformation to the original length of the body is known a2 lengitudinal
far linear) strain. The longitdinal straln is slsa defined as the deformation of the body per
unit kength o the ﬂ.er,ur.u-:-n af the applied lead.

Lat L = Langth af the body,

P = Tensile force acting on the bady,
8L = Incraase in the length of the body in the divection of P.
Then, longitudinal straln = E'II.I'

\n. The strain at ri bes to the direction of applied load is known as
Mrdiuﬁﬂlﬂh;mﬂm I:m.ra!'llteﬂt?th?bmudth b and depth iasy‘n[imd to an axial
tongile load P as shodm in Flg. L6, The length of the bar will increase whila the breadth and
depth will decrease. |
Let 4 &L = Increass in langth,

&h = Decreass in breadth, and
& = Decreass in depth.

Then longitudinal strin = % LT B

b il
and Iatarll pirain = T ar =r +J 1.7 (CH)
— by i
gl ! | 1 Ei— by f— .
H—q:--ﬁm-i-;{ b - L ¥
| f L+ BL C
Fig. L5
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=a - e —
Mote. {1} If longltudinal etewin is tenallo, the fateral straing will be ompreasive,
(i) IF lomgitadinal steuin is compresaive then labsral straing will by tensile,

Uii) Heneo overy longitudinal strain in the divection of lond b secompanied by Interal steakng of
the opposite kind bn all directions perpendicidar i the lond.

% Poisson’s ratio. The ratin of lateral strain ta the lngitudinal strain is a sonstant for
n given material, when the material s stressed within the ebstie limit, Thiz ratio is callod
Foisson's ratio and it iz generally dennted by ). Henee mathematically,

Listeral strain
Longitudinal steain LT
or  Lateral etrain = y x Longituding strain

. Ju Interal strain is upposite in sign to longitudinal stealn, hence algehraically, lateral
strain ia writien as

Lateral strain = -  » Langitudinal strain [ 1T {EY]

Paisson’s ratio, p =

Problem 1.2, Find the mirimuym diameter of a steel wire, whick is used fo raise a load
of 4000 N if the stresa in the rod iz not lo exceed 35 MN/m?,

Sol. Glven : Load, P=40N

Htress, o = 95 MN/m® = 95 x 10F Nims (- M= Moga = 10f)
= 35 N/mm® (= 10F Nm® = 1 Nimm®)

Lat D = Diameter of wire in mm

L Area, A-Eﬂﬂ
_ Load _ P

dren A
mm_-mmn o ﬂlziﬂrﬂ]x#
L =P m o G
i

Mow #trans

s = .61

D =788 mm. Ans

Problem 1.3. Find the Youngs Moduwlus of o brass rad of dismeter 25 mm and of
length 250 mm which {s subfected to o tensile load of 50 kN when the extension of the rod
ig equad to 0.3 mm,

Bal. Given : Dia. of rod, D = 25 mm

- Area of rod, A= E (25)% = 490,87 mm?
Tensile load, P = B0 KN = 50 x 1000 = 50,000 N
Extension of rod, dl: = 0.3 mm

Length of rod, L = 250 mm

Department of Mechatronics Engineering, NCERC, Pampady.
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Stress (o) is glven by equation (1.1), as
or f ot 50,000
y A 49087
Strain (¢) is given by equation (1.2), as
dl. 03
é= FGT”—O' -0.0012.
Using equation (1.5), the Young's Modulus (E) is obtained, as

> 2
g Stress JOLSENAmM® _ ooog gg Njmmt
Strain 0,0012
= B4883.33 x 10° N'm®, Ans. (v 1 N'mm?* = 10* N/m?)
= £4.883 x 107 N'm*® = 84.883 GN/m® Ans. (- 108 =G)

Problem 1.4, A tensile test was conducted on a mild sieel bor. The following data was

= 101.86 N/mm?*.

obtained from the test :
(i) Diameter of the steel bar =3em
(ii) Gauge length of the bar ' =20 cm
(iii) Load at elastic limat - 250 kN
{iv) Extension ot a load of 160 kN =021 mm
(v} Maximum load - 380 kN
(vi) Total extension =60 mm
(vii) Diameter of the rod at the fuilure =2.25 em.
Determine :(a) the Young's modulus, (b) the stress at 'astic limit,

{c) the percentage elongation, and {d) the percentage decrease in area.
Sol. Area of the rod, A=%D‘='—:~(3)’cm’

U
s pooiefiis]]

(a) To find Young’s modulus, fivst calculate the value of stress and strain within elastic
limit. The load at elastic limit is given but the extension corresponding to the load at elastic
limsit i8 not given. But a load of 160 kN (which is within elastic limit) and corresponding exten-
sion of 0.21 mm are given, Hence these values are uged for stress and strain within elastic

Hmit
Stress w 1204 | 1501000y, 8 (+ 1kN = 1000 N)
Area  7.0685 x 10
= 212209 x 10* N/'m*
Increase in length (or Extension)

. Strain = 5 ol length (or Gauge length)

0.2 mm
“20x10mm %.00205

» Young's Modulus,

Stress 212209 x 10*
E= s 0105 = 20200523 x 10* N/m?

Department of Mechatronics Engineering, NCERC, Pampady. 17
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= 202.095 x 10° N/m* {* 10°=Giga = G)
= 202,095 GN/'m®, Ans.

(b) The stress at the olastic limit is given hy,

Stress = Load at elastic limit 250 x 1000

- Area 70685 x 10-*
= 35368 x 10¢ N'm*
» 353,68 x 10° N/m? (= 10°= Mega = M)

» 353.68 MN/'m?, Ans.
(¢) The parcentage elongation is ob¢ained as.
Percentage elongation
- Total increase in langth__ :
Original longth (or Gauge length)
.;l_);tlomm » 100 = 30%, Ans.

(d) The percentage docraase in area is obtained as,
Percentage decrease in area
) _ (Original ares - Area at the failure) .

100

Original area -
(gxsg-%xﬁsl]
- = x 100
'Ixil:
2 _pne? /
;[3——5,2-2-1]:( 100 = Q—?ﬁl x 100 = 43.76%. Auns.

Problem 1.5. The safe stress, for a hollow stec! column whick carries an axial load of
2.1 x 10° RN is 125 MNim?, If the external diameter of the column is 30 cm, determine the

internal diameter,
Sol. Given -
Safe stress®, o= 126 MN/m® = 125 x 10* N/m?
Axial load, P=21x10"kN=21x10¢N
External diametor, D =30 am =0.30 m
Let d = Internal diameter
“ Aren of cross-section of the column,

A.;w:-.ﬂ). ’z‘ (.30% - @)

Utlng equation (1.1), o= -E

Department of Mechatronics Engineering, NCERC, Pampady.
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]
or 125 % 108 e 219100 st gy . Ax2IE 0P
-’-‘-Lﬂﬂ“—d’] ﬂHl!EE-H:'[{I‘
4
ar U.ﬂﬂ—dﬂ—ﬂmﬂ ar  L09 - L2130 = 45

Jﬁ.{ﬂ 002139 = 03610 m = BE.10 em.  Ans

Problem 1.6 The wlifsate stress, for a hellow steel columa which corries an azial laed
of 1.9 MN ig 480 Nimmi®. If the external diameter of the column is 200 mm, determine the
infernal divmeter, Tizbe the fretor af safety ax d.

Sol. Given :

Ultimate slress, = 480 M/mm?

Axial load, - P=10MN=19%10°N [ Me 109
s = LisWII00 M

External dia., I o B i

Factor of safety =4

Lat d = Internal diametsr in mm

Area of croge-section of the column,
= i (D - %) = E (200° - %) mm?

Using equation (1.7}, we Eat

[ltimate strass
Factor of safely =
e Waorking siress or Permissible stress
o 480
Worldng stress
. 480
ar - Working stress = T = 120 Mfmm?
= 130 Mimen®
hrmruamzaquﬂuun (1.1}, we geb
= E ar 100 = 1000000 IH!I'H:IEII:IIJ:e-:
El:znni _d't} Al 0000 = %)
ar mm-ﬁ—ﬂmmuﬂ—mm.ﬁ
=y 120
ar o = A0 = ZOLGE.6 = 10E4.4
d = 140,85 mm. Ans. _—
Problem 1.7. A slepped bar shown in Fig. 1.6 is subjected f0 an axi-
wlly applied conpressive looad of 36 BN, Find the maxirmem and minisaem g
sbrosres produced, i
Hal. (Fiven : i
Axaal Inad, PedbkN=35= 100N AR
Din. of upper part, D, =2 cm = 20 mm PRIy
Fig. 1.4
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» Area of upper part, A, = E (20%) = 100 x mm*

Area of lower part, A, = 41 Di= 41 (30%) = 226 = mm®

The stress is equal to bad divided by area. Hence stress will be maximom whers nrea is
td i, Hemee stress will be maximom in apper part and minirmzm in lewer part,

Laad = 10#
- Maximum stress - — ikl = 111408 Nmm®. Ans.
A, 1% n .
= 10#
Minimum siress = Load - 35 10 = 485148 Mimm®. Ans.

Ay 2X5wax

L10, AMALYSIS OF BARS OF VARYING SECTTONS

A bar of different lengths and of differont diameters {and hemee of different crogs-sec-
tional areas) is shown in Fig. 1.6 (a). Let this bar iz subjected te an axdal load P.

Sagtion 3
__?p_l:ﬂmz
Saction 1
&
= & | & N

M L Ly —b— L, — ¥
Fig. 1.6 (a)

Thaugh rach sectinn 2 subjected to the same axial load P, vet the siresses, straing and
change in lengths will be different. The total change by length will be oblained by adding the
changes in length of individual section,

Lat P = Axial load acting on the bar,
L, = Length of section 1,
A, = Crocs-sectional area of ssction 1,
Ly Ay = Length and cross-sectional area of section 2,
L., Ay = Length and eross-gectional area of section 3, and
E = Young's modulus for the bar.
Then stress for the section 1,
o = Load P
' Arenofsectionl A,
Similarly stresses for the saction 2 and section 3 are given as,

P P
E==E and g;= —
Using equation (1.5), the strains in different sections are obtained.
i : _o P B (P
Strain of section 1, ¢, = & AE [ nl_d‘-.]
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Bimilarly the strains of section 2 and of section 3 are,

i) F a pal
oy = -El-I;E and £y = E-H.;.E
Change in length of section 1
Length of section |
ar e dly
1= L]
where dL, = change in length of section 1.

v Change in length of section 1, d, = & L,

_ Pl I
AE YUAR

Similarly changes in length of section 2 and of section 3 are obtained as :
Change in length of section 2, d, = ¢, L,

But strain in section 1 =

_ Ly ) P
_-J..HE & EE-H,JE
and change in length of section 3, dL, = e,L,
o Pl B P
Ak CUTRE
~. Total change in the length of the bar,
F P F
dL:dL1+dLa+ﬂ'La-AfE+$+&:§
|l e g
E[dl +-“a + AJ 1.8}

Equation (1.8} is used when the Young's madulus of different sections is sume. If the
;mmg’hzrm&duim of different sections is different, then total change in length of the bar ia
ven by, —

L Ly L,]
dl=P|——4 * = 18
[Ev"ll By " By, e
l_'l'l:ll:!l-l:mILMMMFH"&]"MH#MR{MEﬁﬂrmn-&iﬂingﬂftﬁ.mhyﬂﬁ.&ﬂa
shown in Fig. 1.6 (b). If the Young's modulus = 2.1 = 10° Nimm?®, determing :
(£} siresses in pach section and
(i) botal extension of the bar,
E.u:imH
Sachian 2
Snglion
000 M o | | 5000 M
T

e T om [H& Jeom Dl S¢m DIA
¥

b= 20 om —eH— 25 o b 22 Ef ]
Fig. 1.8 {&
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Sol. Given

Axcial pull, P = 35000 N
Length of section 1, L, =20 cm = 2 mm
D, of seckion 1, Dy =2 cm = 20 mm

<. Ares of section 1, ﬂ.=E{ﬂ:lF]=l-ll‘l}r:mm=
Length of section 2, L, = 25 cm = 250 mm
Dia. of saction 2, I, = 3 em = 30 mm

= Area of gection 2, AE.—:—:{W‘]-EE::M”
Length of section 3, L, = 22 cm = 220 mm
. of section 3, Dy = 5 o = B mm

- Area of section 3, %:%[Eﬂﬁ-ﬁ%:m*

Young's modulus, E =21 x 10° Nimm?,
(] Sereaces i emch sevtion

Stress o section 1, o = nf:i::hl
P 3500 3
-*'lL 0 = = 111408 Nimm= Ans.
] A
Stress in section 2, u,-E=2%”-mmwum‘. Ans.
Stress in section 3, %:i-éﬁ = 17.625 Mmmi Ans.

(7} Tatal extension of the bar
Tlzing equation (LA], we get
- Plig Iy ﬂ]
Total extension =E \ A, + As + A,
35000 (200 250 *__Eﬁﬂ]
21x10° L 100n 23Exx 626xn

= w {6366 + 3.6368 + 1.120) = k.13 mm. A,
2.1% 107

Problem 1.8, A member formed by connecting a steel bar fo an aluminizm bar is shown
in Fig. 1.7. Assuming that the bars are prevented from buckling sideways, coleulate the
magnitude of force P that will couse the total length of the member fo decrense 025 mm, The
wirluas of slnstic modulus for steel and alumininm are 2.7 « 1P Nimm® and 7 « I10¢ Nimm®
respeafiuely.

Hal. Given

Lemgih of steel bar, L, = 30 om = 300 mm
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Areaof steal bar, A, =5 x5 = 3 em® = 250 mm?® P
Elastic modulas for stoel bar,

5 5

E, = 2.1 x 105 Nimm? i Staai bar |
Lemgth of aluminium har, = o

Ly = 86 em = 380 mm -
Area of aluminium bar, A?ﬂpil;ﬂt:'l

Ag =10 x 10 = 100 em® = 10000 mm? MW em Rooei)
Elastic modulus for aluminium bae, j

E, = T x 10¢ Nimm? T
Total decrease in length, df = 0,25 mm Pig. 1.7

Last P = Haguired fores,
As both the bars are made of different materials, henee total change in the lengths of
the bar is given by equation {1.9),

L Ly
df w P | —l- & |
[Eliq'[ Eyd, |
300 380
; Pl—
. an {z-hlcﬁxaﬁm*nm'nm]

= PETH 2 10T + 5428 x 1077 = P x 11,143 = 1077

___ 025 0x10"
C11.142= 107 11142

= 23437 x 10° = 224.37 kN. Ans,

Problem L.10. The bar shown in Fig. L8 is subjected fo a tensile load of 160 BN, IF
the stress in the middle portion is limited to 150 Nimm?, determine the diameter of the
middie portion. Find also the length of the middie portion if the totol elongation of the bar
i5 to be (L2 mm. Young's modulie is given. as equal to 2.0 « 10° Nimm®.

Sol. Given :

Tansils lopd, FP= 160 kN = 160 = 108 N
Stress in middle portion, ay = 160 Nimm®

Total alongation, dle = 0.2 Eimn

Total length of the bar, L. = 40 g = 400 mm
Toung's modulus, F = 2.1 = 10° Nimm?

Diameter of both end portions, [, = 6 e = B0 mm_
. Area of cross-section of both end porifons,

H|=%!W=E-D'Dr:m’.

160 kN e 160 kN
= GemDis ) Bom OIA -

k.
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Let D, = Diamater ol the middle portion
L, = Length of middie portion in mm.
Length of both end portions of the bar,
L, = {400 - L,} mm
Using equation (1.1), we have

Toad
-E-traaa-ﬁm.
For the middle pettion, we have
a
:rgu.i whare A, = & D
- 180 = 150
Ink
ik
4 = 160000 =
2 -
Dy x o 1540 b
ar oy = J1956 = 36,895 mm = 3085 cm.  Ans.

-, Area of eross-ssction of middle portion,
A,-%:m&a: 1066 mm®
Mow using equatian {1.8), we got

PlL, L
Tatal extension, .-1.!.:—[—'-1—1]

Ela, 4, .
_ 160000 [(400- L} | Ly |
ur U'L*uxmi[ 800 *13551
[+ L, =(400- Ly} and A, = 1056)
02x21x10°  (400-Ly) Ly
o 60000 800w OGS
1068400 - L.} + 9005 L,
ar 02635 = 300 7 = 1058
aF ﬂ.ﬂﬂﬂﬁxmm:nl{ﬁE:l{]l}ﬁudﬂﬂ-lﬂ'ﬂELa+Mh:!Ll
ar TH11B86 = 426400 ~ 1065 L, + 2827 L,
oF TﬂllE-E-m&m:I.,EEBE‘?—lﬂ}BJI
ar :illil-ﬂl'IE-li-].'?EI].La

L= 3';"‘;:?5 = 207,14 mm = 20.714 em.  Ans.

1.10.1. Principle of Buperposition. When n number of loads are acting on a body, the
regulting strain, according to principle of superposition, will be the algebraic sum of strains
caused by individual leads.

Whils using this principle for an elastic body which is subjected to a number of direct
farces (tensile ar compreagive) at difforent sections along the length of the body, first the free
body diagram of individual section is drawn. Then the deformation of the each section is obtained.
The total deformation of the bady will be then equal to the algebraic sum of deformations of the
individual sections.
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Problem 1.11. A brass bar, having eross-seetional area of 1000 mm?®, is subjected fo
axizl forces ax shoun in Fig. 1.9,

& B G I?'

10k
50k | 0 -
20 kN

Hﬂm—m—1 m —==pee— § 20m —

Fig. 1.9

Find the total elongation of the bar. Take E = 1.05 » 10F Nimm?®,
Baol. (Hiven :

Area, A = 1000 mm?®

Value of E = 1.05 « 10* Nmm®

Let il = Tolal elongation of the bar.

The farce of B0 kKN acting at B is split up into three forces of 50 kNN, 20 kN and 10 JeN.
Then the part AR of the bar will be subjected to a tensile load of 50 kN, part BC is pubjected to
a compresaive boad of 20 kN and part BD is subjected to 2 comprassive load of 10 kN as shown

in Fig. L.10.
B0 kN 50 kM
o I

10 &N
e

B o
Fig. 1.10
Part AB, This part is subjected to a tensils load of 50 kN. Henea thers will be Increass
in length of this part.
Incraasa in the kength of AR
B

:EE:LL

BOx1000
= 1000 = 1.05 = 10°
= (LBA5T,

_ Part BC. This part is subjected ta a compressive load of 20 kN or 20,000 N. Hance there
will be decrease in length of this part.

Diecranse in the lenglh of BT

(» P, = 50,000 N, L, =600 mm)

P, 20,000

i = 10 i L= 1ms= LH0 mm)
B ﬁ'

AE M T 1000 % 105 %107 gm i m

= 1804
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Fart BI} This part is snbfected to a compressive load of D0 kN er 10,000 H. Hence thers
wiill be decrease in length of this part.

Decrease in the length of B0

=23 oy oo 10000
=ag s L0 > 1405 = 10° e

(v Lg=12+1=282mcr 2300 mm)
= [L20A5.

- Total alongation of bar = 0. 2867 — 01904 - 0. 20495
{Taking +ve sign for incresse in length and
—ve gipn for desrense in length}
== {1142 mm. Ans,
Megative sipgn slvows, that there will be decrease in length of the bar.

Froblem L.12. A memiser ABRCT is sufjsctad to poinf loods 'y, £y, Py and P, aa ghown in

Feg. 1,11,
= [
&
| D
f Tl T
P, [ = Pe E Py " P,
E——— Eii-imm - E -+ 1ZED mumi

P—'Imm—ll-— &l em —\-I+l-— Mm“:h-l
Fig. 1,11

Calewlate the force Py necessary for equilibrizm, WPy = d5 BN, Py = 450 &N and
Py = 130 kN, Determine the ool elongation of the member, sesuming the modufus of elea-
Heity to be 2.0 w I10° Nimm®,

Sol. Given !

PartAB: Area, A, = 626 mm? and
Length, Ly = P30 o = 1200 mom

Part B ;. Arsa, A, = 2600 mm® and
Length, L =60 cm = 600 mm

Part &0 : Arvea, Ay = F20 mm? and
Langth, L. =90 cm = D0 mm

Walue af E =21 = 10 M/mm?,

Value of Py recessary fov equeilibriem

Resolving the forces on the rod along its axis (ie., equating the foress scting towards
right to thase mcting towards 1efL), we get

Fo+Py=P, 2 P,
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But Pl'“mv
P, = 450 kN and P, = 130 kN
45+ 450 =P, + 130 or P, =496~ 130 = 366 kN

'l‘iufmeot&ﬁskNadlngatBLsnpluinuol.wofomeeoﬂ.’:kNandszOk’N!o 366 — 45
= 320 kN).

The foree of 450 kN acting at C is eplit into two forces of 320 kN and 130 kN (ie., 450 - 320
= 130 kN} as shown in Fig. 1.12.

From Fig. 1.12, it is clear that parl AB is subjected to a tensile load of 45 kN, part BC is
subjectad to a compressive load of 320 kN and part CD is subjected to a tensile load 130 kN,

A B
e ——
220 KN 320N
B [+
130 &N 130 kN
Cc D
Fig. 1.12

Hance for part AB, there will be incrense in length ; for part BC there will be decrease in
length and for part CD there will be increase in length.

Increase in length of AB

-:{E xlq'm % 1200 (', P =45 kN = 45000 N}
1
=041]14 mm
Decrease in length of BC
P 320,000 . ~
-AQEKL:-%OOKZI)(IO“GOO (> P = 320 kN = 320000)
= 0.3657 mm
Increase in length of CD
= f . 130000 900 (- P=130KN =130000)
ME 1250 x 2.1 x 10
= 0.4457 mam

Total change in the length of member
w (L4114 ~ 03657 + 0.4467

{Taking +ve sign for increase (o length and
—ve sign for decrease in length)

= 0.49141 mm (extension). Ans.

Problem 1.13. A tensile load of 40 &N is acting on a rod of diameter 40 mm and of
length 4 m. A bore of diameter 20 mm (s made centrally an the rod. To what length the rod
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whanld be bored ge that the total extension will increase 305 pader the same teneile lond, Take
E =2 x 0¥ Nimm?®,

Sol, Given ;
40k 40k
g ] Y
H 4m -
. Fig. 1.12 (a)
Tensile load, P4l kN = 40,000 N
Dia. of rod, D = 40 mm
Area of rod, .-*.-Et-m?]--mu.-:mnt
b [ — K)o —— o 1 —]
- dm {
Fig 1.12 (b}
Length of rod, L= m=d 5 W= 4000 men
Dia., of hora, d = M mm
. Area of bore, u=ExW’-IW.‘Lm’
Todal extension after bore = 1.3 » Extension before bore
Value of = 2w 107 Nimm®

Let the rod be bored o a length of x meter ar x = 1000 min. Then length of unboered
portion = (4 = x} m = (4 < ) x 1M mm, First caloulate the extension before the bore is made.
The extension (84.) is given by,
F 0000 = 4003 2
A TR T
Mow extenzsion after the bore ja made
= L5 x Extension before bare

=18 % —a—— mm i)
s

E
The extension after the bore is made, is also obiained by finding the sxtensions of the
unbored length and bored length. .
For this, find the stresses in the bared and unbored portions,
Btress in unborved porticn
_Lead P 40000 100 2
S Area A W0m - m o mm
Extension of unbored portion
Stress ,
Tk ® Lapgth of unbored portion
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1060 4=zl

'L % (4 -z = 1) = BT
fxdx 100 I
Stress in hared portion
Lead P 40000 40006
CAren (A-g) (4007 - 100n) 300z
Extenzion of bored portlon
=Eh;ux|.¢ngthnfhnredparhﬂu
=—HmLﬁuumU:-i—Imm
0= 2= 10 ik 4
. Total extenalon after the bore is mades
_d-x) s
T 2x  6m
Equating the equations () and (),
16 4 x &
n ¥ Ba
or 5.5-‘;’{%’ or SBx8=3x{d-z)+4dx
o 156=12=-dx+dx or 156-12=x or dfi=x

v, Fod should be bored upto a length of 5.6 m.  Ans,

L)

Department of Mechatronics Engineering, NCERC, Pampady.

29




MR 306 : MECHANICS OF SOLIDS

1.18. ANALYSIS OF BARS OF COMPOSITE SECTIONS

A bar, made up of two or more bars of equal lengths bat of
different materials rigidly fixed with aach other and bohaving
8z one unit for extension or compression when subjected to an
axial tensile or compressive loads, is called a composite bar, For
the composite bar the following two polnts are important :

1. The extension or compression in each bar i= squal, Hence
doformation per unit length e, strain in each bar is equal.

2 The total extornal boad on the compogite bar s equal to
the sum of the loads carcied by each different materinl,

=
E
o
-'b.
b0
=
=
=
-
=
el

mater!EE.- 1.15 shows a composite bar made up of two differont Fig. L15
Lat P = Total load on the composite bar,

L = Length aof compasite bar and also length of bare of different materals,
Ay = Aren of eross-asction of bar 1,
Ag = Area of cross-section of har 2,
E; = Young's Modulas of bar 1,
E, = Young's Modulus af bar 2,
#y = Lond shared by bar 1,
Py = Load shared by bar 2,
o, = Stress induced in bar 1, and
¥y = Slress indoced in bar 2
hare Now the total load on the composite har is squal to the sum of the load corried by the fwa
P=PF +P, -k
_ Logd carried by bar 1
 Aren of ervas-section of bar 17

The stress in har 1,

B
"L'T: nr Py=o Ay -Hidd
Similarly stress in bar 2, g = f:—- ar Py=a,4, .-[EEE]

Bubstitating the values of P, and P, in equation (i), we gt
) P=aai, + Oy, i ]
Since the ends of the two bars arve rigidly connected. each bar will change in langth by
theuame_l_mm.ﬁimﬂmlmithnfunh bar is eame and hence the ratio of change in length
o the oripinal length (Le., steaind will be game far each bar.
. Streas in bar 1 oy
Young's modulus of bar 1 E, °

Bt gtraln in bar 1,

Similarly strain in bar 2, = —;1.
'E
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But gtrain in bar 1 = Strain in bar 2
]
= E ", ET]|
From equations (iv) and (v), the stresses o, and oy can be determined, By substituting
the vakucs of , and o in equstions i) and (t0), the load carried by different materials may be
oM :

-
Maodular Ratio, The ratio q-fﬁ iz called the modular ratho of the first matertal to the

spcond,

Pru'l:l:.m 1.19. A steed rod of 3 em dinmeter is eneloged contrally in a hollow copper tube
of external diameter 5 em and internal diameter of 4 eni. The compogite bar is then subjected fo
an axial pull of 45000 N. If the length of eack bar is egual o 15 cm, determine :

() The séresses in the rod and tube, and

(if} Load carried by each bar,
Take E for sivel = 2.1 x 10° Nimm? and for copper = 1.1 » 10F Nimm®,
Bol, Oiven :
Dia. of steel rod = 3 em = 30 mm A,
~ Area of steel rod, l. z «-{.é -
T :_*_' [
. Ay= 7 (307 = 706,86 mm? E h 3 g w
Extarnal dia. of coppor tube Vom £ E Bioel e ERT
= i e = B0 min ‘L - % &
Tritermal dia. of = =
mzp::zlzemmm 2 % £
< Area of copper tube, a 3;:_“”

i

A, = 7 [50° - 40%) mun? = 706,86 mm?

Axial pull on compaogite bar, = 45000 N
Langth of each bar, L=16¢em ¥ 116
Young's modulus for stael, E, = 2.1 = 10° Mmum*
Young's modulus for copper, E_ =11 x 10* N‘mm?
(63 The wiress in the rod ond fuhe
Lat o, = Btress in staal,
P, = Load carriod by steel rod,
7, = Slreds in copper, and
P, = Load carried by copper tubs.
Now gtrain in stee] = Strain in copper

ar bl T { 8 o strai
E, K .
E o Al=1P
o= E ®a, = TIET * @, = 1908 o, : 1)
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Load

Mow siress = &=, Load = Stress x Aren
Laad on steel + Load on copper = Total load
o, KA +o,xA =F i>> Total lond = F)

ar I..EI:I'EU{HT'IH.E'E +ﬂeﬂm.ﬂﬂ=im
ar a, (LO0D x T BE + T06.86) = 45000

ar 20066.25 o, = 45000
AR
0,7 gizeor = 9188 Nimm®., Ans.

Subetituting the value of o in squation (i), we got
a, = 1.908 x 2188 N'mm®
» 4177 Nimm®. Ans.
(i) Load carried by exch bar,
As laad = Stress x Area
= Lond carried by steel rod,
P, o x4,
= 41.77 » T00.86 = 296255 N. Ans.
Load carried by eopper tube,
P = 45000 - 20525.5
= 154746 N. Ans.
Problem 1.30, A compound tube consisle of a pheel fube 140 mm interiol digmelder
and 160 mm external diameter and or outer brags tube 160 mm infernai diameter and

180 mm external diameter, The fwo tubss are of the same length. The compound tube carries
an axial loed of 900 kN, Find ihe stresses and the Iond carrisd by enck tube cnd the amouni

it shortens, Length of each tube ix 140 mm, Take E for steel as 2 x 10° Nimm?® and for brass
s 1w I0F Nimm?,

Hol. (iven ©
Intarnal dig. of steel tube = 140 mm
External dia of steel tube = 160 mm

- Areaof stoel tube, A, = 7 (160° - 1407) = 47124 mu?
Intornal dia, of brass tube = 160 mm
External dia. of beass tube = 180 mm
- Areaofbrasstube, A, = 7 (160* - 160% = 5340.7 mm®

Asxial load corried by compound tubse,
P =900 kN = 900 » 1000 = SO0 N
Length of each tubs, L= 140 mm

E for steel, E =2 x 10° Nimm*
E for brass, E,= 1% 10° Nimm?
Lat a, = Stress |n stesl in Nimm® and

o, = Stress in brass in Nimm?
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Mew strain tn stesl = Strain in brass

E i 10°
l]:—'-h!ﬂ: '::E.U
REPET R

£
E,
Now load on steal + Load on brass = Total load

a9 0 ['.' Strain =

Hl:m.ns]
E

i}

ar @, %A +0,x A, = 200000 (v Lond = Stress ¥ Area)

ar 20, % 47134 + g, x 6340.7 = K000
ar 147666 ¢, = K000
_ 900000 _ i
% Tiggag - e o An
Substituting the value of p, in equation (i}, we get
g,= 3 6080 = 1218 Nimm®, Ans.
Laud carried by brass fubs
= Strugs x Aren
wi, o Ay = B0.95 % 5340.TN
= 26516 N = 328515 kN. Ans.
Land carried by stea tuba -,
= 300 - 335,515 = 574485 kN. Ans.
Dhecrease in the length of the compound tube
= Diecrense in length of either of the tubes
= Diectease in length of brass tube
= Btrain in brass lube £ Original length
Gy, B0
P

% 1400 = 0,0B53 mm, Ans,

(= 0,22
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Method of Sections

Method of Sections | Analysis of Simple Trusses

Method of Sections

In this method, we will cut the truss into two sections by passing a cutting plane
through the members whose internal forees we wish to determine. This method permits
us to solve directly any member by analyzing the left or the right section of the cutting

plane.

To remain each section in equilibrium, the cut members will be replaced by forces
equivalent to the internal load transmitted to the members. Each section may constitute
of from which three equilibrium equations can be written.

EFH ID, EFV ID, and EMG =0

Because we can only solve up to three unknowns, it is important not to cut more than
three members of the truss. Depending on the type of truss and which members to
solve, one may have to repeat Method of Sections more than once to determine all the

desired forces.

Method of Sections Simple Steps:

=  Always Start by calculating reactions at supports

* Make a slice through the members you wish to solve
=  Treat the half structure as its own static truss

= Solve the truss by taking the sum of forces = 0

* Take the moment about a node of more than one unknown member
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In brief ......... .

1. Draw the FBD for the entire truss system.

2. Determine the reactions. Using the
equations of (2 D) which states:

) E=0, 2 =0, 2 M, =0]

3. Choose the section, and draw FBD of that
section, shows how the forces replace the
sectioned members.

. Using the equation of (2 [)) which states:
ZF =0, J.5=0, XM =0]

" \Thc internal forces are determined.
\ ;
NQ/ “Choose another section or joint.

/

\ JJ Sanee it e S s, el

For example : Analyse the system shown below...

11501\1
120N B D F

Il5 Il35N 3m
120N

A C E G

L 4m L 4m L 4m L 4m L

A | | | |
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Let's create a section by cutting through members AC, BC and
BD. Recall that we want to cut through at most three members.

120N B D F
llS
120N
A C E G H
120 N B b
Fep
3m
jF .
120 N v B¢
) A ¢ >
L 4 m y 4 m "
A A A

Since Fgc is the only force that has a vertical component, it must
point down to balance the 15 N force (A, ).

Taking moments about point B has both forces at A giving
clockwise moments. Therefore, Fac must point to the right to
provide a counter-clockwise moment.

Taking moments about point C has the 15 N force acting at A and
the 120 N acting at B giving clockwise moments. Therefore, Fgp
must point to the left to provide a counter-clockwise moment.
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T7Y F=+15N— Fge =0
Fgc = 15N (tension)

O ) Mg = —(120N)(3m) — (15N)(4m) + Fac(3m) =0

N
Fac = (360 + 60)Nm = 140N (tension)
3Im
O F > Mc = —(15N)(4m) — (120N)(3m) + Fgp(3m) =0
Fap = (60 S 3ﬁﬂ}Nm — 140N (compression)
3m
like this we have to analyse the whole problem.........

Me‘ﬁmooL ol
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=4 5_ec—f;c-n_,3, =
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D Tibe vy i Cu;;!' injic =z 5e.c
< ¥ - = -
2z each > ec+ioms is analysect
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k&ﬁrﬁ ¥ BD.-

%) (45-'53 equilbvyiorn S qg,uadicon
F ¢, ra = & £ o . Tilhe Fovee
ave Afe~vrriradd -
eq :-

Department of Mechatronics Engineering, NCERC, Pampady. 38




MR 306 : MECHANICS OF SOLIDS

>t ’

AsSsSum P"”;crr‘\,b v 2

- .—‘N 4-YL’€,& rMambets 'a-'-e 'Y.T'B..J‘J'\/J;N

Cie, e vevy rMermbeYy of Hwe —A~use (5

- “
iy P u~e Cormmpve SSiom o [Pu~e

tensicrm o~ pPuve. ° Shaa~ "51*6596‘85] -
C.orv-'nple.‘x. Sivessess ave

GAnd. fa . o>HAao~
e o T £ = Joirds

pﬂfcac-ﬁcall:] BEevo % load acts
C‘Y“ola -
- i
e jlv‘:l of % CHed Maab e~ a> Cmp&*ed
+e Sxde vl loar L is V\.ﬁ);s.‘b)e Grel

ot Corisicat ™) Fovr ' “Colcudatior -

. )
3 sl S DN,

i -, AL loae ef i XOT S G2
e\ is o lc"a’f"\':" '“"sod 1 XD 1§
N = <

e lecacds +o v va~ :
—~ = Qf‘.l‘hi': -

- [ =) VQ'VJ > -[-Qd}o‘_lé - T ‘
SV T vty ~ver o A Ul av s Foon ch.?"'(' %

-
!

% b e Thha AecHon lire T maust riar | o wE v e
Hran = rrermibevs - T o T o
Cc"ﬂple.‘x FH v ctuve we have %  dreaw

"'m MC‘"'J ‘rBD 3

39

Department of Mechatronics Engineering, NCERC, Pampady.




MR 306 : MECHANICS OF SOLIDS
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Stress-strain Diagram

Suppose that a metal specimen be placed in tension-compression-testing machine. As
the axial load is gradually increased in increments, the total elongation over the gauge
length is measured at each increment of the load and this is continued until failure of
the specimen takes place. Knowing the original cross-sectional area and length of the
specimen, the normal stress o and the strain = can be obtained. The graph of these
quantities with the siress ¢ along the y-axis and the strain = along the x-axis is called the
stress-strain diagram. The stress-strain diagram differs in form for various materials.
The diagram shown below is that for a medium-carbon structural steel.

Metallic engineering materials are classified as either ductile or brittle materials. A
ductile material is one having relatively large tensile strains up to the point of rupture
like structural steel and aluminum, whereas brittle materials has a relatively small
strain up to the point of rupture like cast iron and concrete. An arbitrary strain of 0.05
mm,/mm is frequently taken as the dividing line between these two classes.
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Actual Rupture Strengt

U — Ultimate Strength j

R Rupture Strenqth
Y Yield Point
E — Elastic Limit

P — Proportional Limit

Strain,

Stress-strain diagram of a medium-carbon structural steel
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Proportional Limit (Hooke's Law)

From the origin O to the point called proportional limit, the
stress-strain curve is a straight line. This linear relation
between elongation and the axial force causing was first
noticed by Sir Robert Hooke in 1678 and is called Hooke's
Law that within the proportional limit, the stress is directly

proportional to strain or

Robert Hooke
The constant of proportionality k is called the Modulus of
Elasticity E or Young's Modulus and is equal to the slope of the stress-strain diagram
from O to P. Then

Elastic Limit

The elastic limit is the limit beyond which the material will no longer go back to its
original shape when the load is removed, or it is the maximum stress that may e
developed such that there is no permanent or residual deformation when the load is
entirely removed.

Elastic and Plastic Ranges

The region in stress-strain diagram from O to E is called the elastic range. The region

L=

from E to R is called the plastic range.
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Yield Point
Yield point is the point at which the material will have an appreciable elongation or

yvielding without any increase in load.

Ultimate Strength
The maximum ordinate in the stress-strain diagram is the ultimate strength or tensile
strength.

Rapture Strength
Rapture strength is the strength of the material at rupture. This is also known as the

breaking strength.

Modulus of Resilience

Modulus of resilience is the work done on a unit volume of material as the force is
gradually increased from O to P, in N-m/m?. This may be calculated as the area under
the stress-strain curve from the origin O to up to the elastic limit E (the shaded area in
the figure). The resilience of the material is its ability to absorb energy without creating

a permanent distortion.

Modulus of Toughness

Modulus of toughness is the work done on a unit volume of material as the force is
gradually increased from O to R, in N-m/m?3. This may be calculated as the area under
the entire stress-sirain curve (from O to R). The toughness of a material is its ability to
absorb energy without causing it to break.

Working Stress, Allowable Stress, and Factor of Safety

Working stress is defined as the actual stress of a material under a given loading. The

maximum safe stress that a material can carry is termed as the allowable stress. The
allowable stress should be limited to values not exceeding the proportional limit.
However, since proportional limit is difficult to determine accurately, the allowable
tress is taken as either the yield point or ultimate strength divided by a factor of safety.
The ratio of this strength (ultimate or yvield strength) to allowable strength is called the

factor of safety.
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Another detailed graph

Strain hardening Mecldng
Stress, o :
A
Ltimate strength
*, I;racture
Vield strength
Young's modulus = Slope = HRise
Run
» Strain, &

Stress-strain curve typical of a low carbon steel. &3

Difference Between Ductile Material and Brittle Material

Every engineering material, when in service, is subjected to external loading of several natures
(continuous, repetitive or fluctuating loading). In some applications (for example, metal rolling or
bending), it is intended that the component should elongate as much as possible before fracture; while in
other applications (for example, stone braking), it is intended that the material should break with minor
deformation under external loading. Based on the capability to elongate under external loading, solid
materials can be classified in two categories — ductile and brittle.
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When external tensile load is applied on a material, initially it undergoes elastic deformation and then
plastic deformation starts. An elastic deformation is recoverable, while a plastic deformation is
permanent. Ability of a material to exhibit plastic deformation before fracture is the indication of ductility.
Materials that show substantial plastic deformation under external loading are called ductile materials;
while brittle materials exhibit negligible plastic deformation. Similarities and differences between ductile

material and brittle material are provided below.

Stress-Strain curve for ductile and brittle materials

Stress
Stress

Strain Strain

Typical Ductile Material Typical Brittle Material

Similarities between ductile material and brittle material

* Both are associated with the plastic deformation of the material under tensile loading.

« Ductility or brittleness is highly temperature dependent. For example, a brittle material can behave
like a ductile one at an elevated temperature. Similarly a ductile material at room temperature, when
frozen, can automatically convert into brittle material.

« Ductility or britileness of a material also depends on the inbuilt stress level. Under presence of high

residual stress, a ductile material may fail without palpable plastic elongation.
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MODULE 2

STRAIN ENERGY ,STRESS & STRAIN AT A POINT
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e e LRF

Problem 4.2 Ifin problem 4.1, the tensils | ; '
" ! , aad of 60 kN is applied suddenly detarmine -
1] nhl.':'Imwrl insfantaneouy sfress Endiced, e -
(£} instantansous elongation in the rodd, and
{iss) atrain enevgy absorbed in the rod.
Sol. Given
The data given in problem 4.1 ja o 40 mm
i = , Area = 400 i
2 x 108 J.:mmal £ =2 % [0 Nimm?® and suddenly applied load ;quﬂmmr Volima =
i) Maximum instanigneous siress indyced | .
Using oquation (4.5),
P G000
| o= x I:EHT%-=IE4!BEHF'IH|]=. Ans,
(£} Instantaneous elongation in the rod
Let % = Instantaneous elongation
I:!"I'l'll'l = E Lo 95'453
£ i x v 1oF B % SO0 [see equation (4.1)]
. e 1,38 mm. Amng,
{iii) Strain energy is given by,

o 964931
U-—xl-'z—? x 2% 10 x = 143938 N-mm ,

2E 2x2x
= 143,288 N-m. Ans,

Problem 4 -
long by the mltllil!Ilu..'!l. C‘uﬂuufu!tamfmmmmpmmgﬁw 10 em? in areq and 3 m
bar e to suddenty oot r‘;;n bﬁ :ﬁh load of unknown magnitude, if the extension af the
E =2 % 10 Nimm? mm.aﬂmdmrm:umwﬂi}.wmwfm

Sﬂ.ﬂ‘lm_

i'l.l"E'-H.{ﬂ'-tlﬂ.!", A:]ﬂmﬂnimmmt

Iﬂ'mm-ﬂfhl'l L:an-.:El}l:H]mm

%2 L6 mm
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Young's modules, E=12x 10° B'mm?,
Lat o = Instantaneous strass due to sudden Inad, and

F = Buddenlty applied Ioad P ®

The extension x i= given by equation (4.1),
[

o
X EHL ar l.ﬁtm-xaﬂﬂﬂ

LB x 2w 10%
o= 225200 e Nimm®,  Ans,

" aaan
mmppiﬂniiﬂmd‘ .
Tha instantancous stress produced by a siudden load is given by equation (4.5) as
N Fad "
cr_E:r.A or Iﬂﬂ:ﬂ:ﬁﬁ

L0 2 J0Wp
- '.=5'ﬂ'|:|'|:|'[:|H=5ﬂ'kH. Ans,

-rJ

suddeniy applied to the rad. Caleulate the instantonsous streas | and eles the instanta
. ireclieped
recus slongation produced in the rod. Take B = 200 GNm2, . )

Bol. Oiven :
h?ngt]:, L=2m=2x 1000 = 2000 mm
Diameter, o = 5 mm

Area, -.-1..:4—':54]5-525::“-.2

Suddeniy applisd load,
FPe 100 KN = 100 % 10060 N
lrajuwf_ £ = 300 GN/m® = 200 = 109 M/m*® (e = Ghign = 109

200 = 107
=Typr MWEmmt o {cim=1000 mm . m = 108 )

= 200 = 3.|:|I' H-"I.D.ml

Using equation (4.5} for suddenly applied load,

P 100 =1000 -
a=2xi=.-:n——°'—1~mum=-1m.anrrmm=. Ang,

625 x
Led il = Elongation
Then r:fL:—F ol = ﬂlﬁ
Prebia Ak E &00 « 107
roblem £.5. A uniform metal bar has a cross-sectional area of 700 mm® et
i.::m-[ﬂ.ihes:-lmsﬂﬂﬁtfhﬂi&ﬂh‘:&hI-H'me’.lnhﬂuﬁﬂhﬂ:phré?ﬁﬁeﬁgrﬁemi::ﬁ
mr:.:-m?;mmm value of an applisd loaed, which may be suddenly applisd wir.ﬁm;i Exeeeding
fee leenit, Ciloulade the velue of the gsraduelly applied load which will proviece Wie some

x 200 = 10186 mm. Ansg,

Bol. Glven :
Area, A = T oym?
Langih, L=1.5m = 1500 mm

Valumas of bar, P:&xL:TﬂﬂxlEDﬂ=lﬂﬂh}ﬂﬂ-mm=
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Stress at elastic limit, o* = 160 N/mm®
Young's modulus, E =2 = 10F Nimm?®
(i) Proof resilience is given by oquation (4.3), as

. a* 160°
Pt'uﬂf'ml]umn: = -E ¥ Volume = m s DRS00
= 67200 N-mm = 7.2 N-m. Ans.
{if) Lot P = Mamimium value of suddenly applied load, and
P, = Gradually applied load.
Using equation (4.5) far suddenly npplied load,
P
-EI*:.EHI (change p to p*)
a®x A 160 = T
P ; = ; = 56000 N = 68 kN, Ans.
For gradually applied load,
' il
L ol n
oT Powo*x A =160 = T00=112000 N = 112 kN, Ans,

Problem 4.6. A tengion bar § m long is made up of o parts; 3 metre of it length has a
cross-sectional area of 10 em® while the remaining 2 metre hos o cross-sectional area of 20 em?.
Ar exind load of 80 kN is gradually applisd. Find the todal sirain energy produced in the bar
atid compare this value with that obéained in o uniform bar of the same length and having the
same volume when under the same load, Toke E = 2 = 10° Nimm?2,

Sol. Ghren :

Tatal length of bar, L = & m = 5000 mm

Length of 1st part, L, =3 m = 3000 mm _

Aren of 1st part, A = 10em? = 10 x 100 mm? = 1000 mm®

Volume of Lat part,
Vy=A, % L, = 1000 » 3000 = 3 x 10 mm?

Length of 2nd part, Ly =2 m = 2000 mm

Area of Znd part, Ay = 20 emi = 20 x 100 mm? = 2000 mm?

s Volume of Znd part, Vi = 2000 « 2000 = 4 x 10% mm?

Axinl gradual load, P=pB0 kN =80« 1000 = SO0 N

s I (
"'_"““""""'1|]‘I:I'I"'"""'""""""'_"E:ll.'.‘-ml -------- Lﬂp
- 3em e 2
b N o
Fig. 4.2
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Youngs modulus E=2x 10° Wimm® -

R0
Stress in lst part ﬂ,lTl iﬁlﬂﬂlﬂmm‘*

Stress In 2nd part u,:%-m = 40 Nimm?

Sirain energy In 1st part,

i . £

&0
:EL 1": m - = -
U, R RTTT % 3 % 1F = 48000 N-mm = 48 N-m

Strain energy in 2nd part,
0 4
N R T
. Tokal strain energy produced in the bar,
U=l 4 Uy=48+ 16 = 64 Nom. Ans.
Strain energy stored in a uniform bar
Vaolume of uniform bar, Ve V, + ¥, = 3000000 + 4000000 = 7000000 ram®
Length of uniform bar, L =& m = 6000 mm
Lat A = Area of uniform bar
Then VedxL or THHK000=A » GO
TOOD0E

EEEEEERE . 1
= 500 = 1400 mm

P 8000

-— e W o . 2
Eﬂﬂiﬂmﬂmw.ﬁ—ﬂ =000 67.143 N‘mm

', Birnin energy stored in the uniform bar,
gl 57.145%

= — = -
B 2% 210"
= 57148 N-mm = 67.143 N-m

_Btrain energy in the givenbar B4 L.
Strain energy in the uniform bar  57.143

x 4000000 = 16040 N-mm = 16 N-m

1 dTa
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RELATIONSHIP BETWEEN ELASTIC CONSTANTS

rmwlum 7 . o> 29 e =
s K@Y :
9 Younas modylus INmndeyrnis of Bul(:(’

P> - 4 )
rocuius & poisson’s Yatio

[—&‘ = 3K(:—2-u)]
e>

2) Relationship blew rod-: of elab-ittib
B’ Mo - RiﬂidﬁJ-“’

[C. SR E ] | E
2 Crre) 3C1- 2y

Problem 2.8. For o moaferied, Foungs modeulus is givern os 12 = 10 N {mm® erd Poissors
rertic ':- Calecolate the Bl mooulus.

Bol. (Given : Young's modulus, E = 1.2 = 107 MNiouom™®

Poisson's ratio, u—-::
Laest K = Bulk moddulus
Using sgumrtann !:E.].-B:I.
— E _]_ﬂ:xm"=l.2xm=
31— Bl 3[1_‘%:' 3,1%
2w 2w 10F

- = OB = 10°% M, Ams,

Prohlem 208, A bor of 30 men dicmeler is sulfected fe a pull of 60 BN, Ths mecsnred
eEdarRaiorn o e dergth of 200 e ix O F e and chonge fn diemeler de LLO0 o, Coelbonloe o
{2} Foung's meodicles i} Proisson’'s rebio and
(i h Bealle modicioes.
Saol. Given - Dia. af bar, o = 30 mm

-~ Area of bar, Azgﬁﬂﬂl“nﬂﬁnml
Puall, FPre@lkMN =60 x 10 N
Gauge length, L. = 204 man
Elxbension, &L = 0.1 mm
Change in dia_, Bt = OoDdkE
(i} Youwngs modelns (E

. ol e ]

- B BiET z
Tensila stress, o= T 84,87 Mo
Longitudinal strain = % = :ﬁ = [ =I5
Teomngile stross
S Woung's modulus, B = i tadingl sirain
i BT

_ — - lr 2
RO 16,976 = 109 N/mm
= L8975 = 10° MNimm®. Amns,
(Ef) Poissons ratia ()
Poisson's ratio is given by eguetion (2.3) ns
Lateral strain

Poissom's ratio Cph = - o
= IZI'.-I;II-:]‘.E ['-‘ Lateral :trﬂ-in=%:|
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(20
= 0.000133
- o — = “,m A.l'll.
T 000G 0006
(iit} Bulk modulus (Ki
Using equation {2, 100, we g&t
E 16975 « 10°
K "

T Bl H1-0.26622)
= 1.209 = 10° Nimm®, Ans.

amga T pag

Probdem 2,10, Determdine the Poizson’s ratlo and blk mediius of o maeterial, for wlick
Yourg's modulus is 1.2 % 10° N/ mm® and modilue of rigidity iz 4.8 % 1080 Nlmm?,

Hol. Given :

Young's modulus, £ = 1.2 x 10° N'mm?
Maodulus of dgidity, C = 4.8 = 10% Nimm?
Lat the Poisson's rakio =

Lzing eguation (2.16], we get

E =301 + )
ar 12x1F =2 4.8 = 10* (1 + u}
1.2 x 10°
ar [1+p3=m=1ﬁ or pn=125-1.0=0E5 Ans
Bulk medulus is given by equation (2,10) as
B 1.2
&K 10" [+ u=025

T 8(1-2u) T B(1-0.25x2)
= 8§ = 18° N'mm®, Amns,

Problem 211 A ber of cross-section & mm = § mm iz swiyected to an axial pull of
TO00 N, The leteral dimeasion of the bar iz found to be chonged do 79985 mm x P985 mm. If
the modulus of rigidity of the material is 0.8 x 10% N/mm?®, determine the Poisson's ratio and
moduliey of elasficity.

Bol. Given ;

Area of section = 8 x 8 = 64 mm?

Axial pull, P = T000 M

Lateral dimensions = T8385 mm x 7.9985 mm

Volume of C = 0.8 x 107 Nimm?
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Lt . = Poisson's ratio and
E = Modulus af elasticity.
_ Changa in lateral dimension
Mow lateral strain = Orizinal lateral di ian
_B-T79986 GOOIE _ . ooo1sts.

B B
To find the value of Poasson's ratie, we must know the value of lngitadinal steain, But
in this problem, the length of bar and the mxial extension is not given, Hence longitudinal
strain cannot be caledlated. But axial stress can be caleulated. Then longitudinal, strain will

be equal to axial stress divided by E.

.. Axial stress ——!P—ﬂ—mﬂmm 2 and ongitudinal strain = —

i H = =84 = , M= an nal strain F

But lateral strain = i  longitudinal strain = uu;—
or (AELETS = = IDEQ'ETE (v Laternl strain = 0.0000875)

& 109,375

B B 0001878 GB35 33
ar E = BE3333.358, 3]

Using equation (2.17), we get

Enﬂl_i-pc] or K= 2031 + p)
w2 0,8 x 1L+ ud (v O=08% 100
ar SEA3IE A3 = 2w 0B x 10501 + p) e B = SH3RIE.33p)
SR2933.33
1 = = SE
. TR 0810 2
1 = 3.6458u — p = 2.6458p

;. Poleson's ratio = p= 3 BARA = L3TE Ans

Modulus of elasticity () is abtained by substitoting the value of g in equation ().

T E = G833 3

58339333 . 2
Ee= ET T 20047 x 10F N'mm?. Ans.

Problem 2.12. Caleulate the modylus of rigidity and bulk modulus of o oplindrical bar
of diagmeter 20 mon and of length 1.5 m if the longitudinal strain in a bar during a tensile siress
iz four Hmez the lateral strain, Find the chonge in volume, when the bar iz sulyected fo a
Fordrosiniie pressure of 100 Nimm?®, Teke B = ] x 10°F Nimm?.

Bol. Crven
Dia_ of bar, A =30 mm
Length of bar, Lelimel5x 1000 = 1500 mm
- Valume of bar, 1;'=E.;r!xj:=£rmxj..5m
= 1G02RT 52 mm”
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Longitudinal strain = 4 x Lateral strain
Hydrostatic pressure, p = 100 Nimm?
Lateralstrain 1 _ 0.25
Lengitudingl strain =~ 4
or  Poisson's ratio, u=0.35
Lat { = Modulus of rigidity
E = Bulk modulus
E = Young's modulus = 1 = 10° Nimm?®
Using equation (2.16), we get
E=2001+ )
ar 1% 10% = 2001 + 0.25)
1= 108

SRR g
E-EH]_E 4 x 10¢ Nimm® Ans.

For bulk modulus, using squatban (2,11), we get
E=3K(1-2u

o 1w 10F = SK(1 - 2 = 0,26)
L |
=H_-=|mwnm=mnm’. Ans,
Tl

Mow using equation (2.89), we get
E

- - i P
" Volumetric strain [ﬂ}
v

where p = 100 H/mm?

LK)
(66T = 10‘5" (&_‘L‘r_]
L4

dv 1K} ;
or '.I-"_=|:|.'Eiﬁ-'-'l'!-:_lﬂ"' = 15 = 10r

dV =V x 15 = 10 = 1060287 52 x 1.5 x 103
= 1580.43 mm?, Ans.

[II-

u =0.25)
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s
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D4~ ultuve-
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HA__}l J'r ~ 1
& R T o5 )5

@>(—L’%/r4" = ')
Ne o

~
A VB :
”'laﬁ' e, Theve aye 5 re : of U"ﬂ‘(l‘)ow'&
S0, we have . %o Fovmuladie 5 Sait
of equations . we kKrnow - the

Htatic | Cguilibvium eq,uqh‘ov{- e,

fx = 4 =o : . 3
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21—;" p’ be e Fo~nce Fequived Jov
1}\.\'{ e‘o‘ﬁao-}:’m b ""\sa A B The
&- L L

FHo~ ol £ 'c;bﬁecwm—; Co~Yeh P"""‘””J S

He Fovce Py e, Pa = $a

PB - Paap!
Pe = Pasxz2p! A
Po - Pa+3 P

Subfrh'-lvie A . .im ®

Pa B4+ Pat pD+ ®ay 200+ Parap) - 4,

2P + .37 = 20 —@
@ n @

.

Pas?P' + 2(PA +2P) -+ V(A S

3
PA“f:]p‘zl'o -

BJ &lvihj & X&

[P,,, 4 RN
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By - subsiitvie

Pe = gkn
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MODULE 3

TORSION

A ghaft is 2aid to be in torsion, when equal and opposite torques are applied at the two
ends of the shaft. The torque is equal to the product of the force applied (tangentially to the
ends of & shaft) and radius of the shaft, Due to the application of the torques at the two ends,
the shaft is subjected to a twisting moment. This causes the shear stresses and shear strains in
the material of the shaft.

16.2. DERIVATION OF SHEAR STRESS PRODUCED IN A CIRCULAR SHAFT
SUBJECTED TO TORSION

When a eircular shafl is subjected to torsion, shear stresses are set up in the material of
the shall. To determine the magnitude of shear steess 6t any polnt on the shaft, consider a
shaft fixed at ane end AA and free at the end BB as shown in Fig, 161, Lat €D is any line on
the outer surfacs of the shaft. Mow let the shaft 35 subjected to & torque T at the end BE az
shown in Fig. 16.2, As a rosult of this torque T, the shaft at the end BB will rotate dlockwise
and every cross-section of the shaft will be subjected to shear stresses. The peint I will shift to
I¥ and henee line CD will be deflacted to CTF a8 ghown in Fig. 16.2 (a). The line OD will be
shifted to () a3 shown in Fig. 16.2 (h),

AR B
-

-1

1

&

1 E D
A i
P |
A |
o |
..-'

. — J

Fig. 16,1, Shafl fixed ot one end AA befors torque T is applisd.
Let It = Hadins of shaft
L = Longth of shatl
T' = Torgue applbed at the end A5
t = Shear stress induced at the surface of the shaft due to torque T
C = Modulus of rigidity of the material of the shaft

Department of Mechatronics Engineering, NCERC, Pampady.

65




MR 306 : MECHANICS OF SOLIDS

g = A plse equal to shear strain
& = LI and is also called angle of twist,

A A AT

A

i T S
¢ ——an :
e —1i " .

:- | 4]
7 E

4 . |

! S

1 Tef

P S —

3 L)
Tig. 16.2. Shaft fixed at A4 and sibjected b Lirgue T at HE,

Mow distortion at the puter surface due ta torgue T
= ml
o Bhear gtrain at outer surface
= Diistartion per unit length
_ Distortion at Lthe outer surfaoe _ _ﬂ'ﬂ

Langth of shaft L
- Tp =tne
=4 (if # i5 very small then tan § = §)
Ehear strain at outer surfacs,
‘oo }
l*"" ; -l.ﬂ”
Mow from Fig. 16.2 (BL
AFo DI =00« 0« R (v 0D =R = Radiuz of shaft)
Bubslituling the value of DIY in eguation (£), wa got
Shear slrain al outer surface
. ”E ’ i)

Mow the modulos of rigidity (0 of the material of the shaft iz given as
_ Shear stress induced  Shear stress al the ouler surface

= S -
Shear strain produced  Shear strain st outer surface
- ( From equation (i), shapr strain = E]
i 81 L
_3xL
i)
oo
- 1610
. R
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Bul=n
& I

Maw for a given shaft subjected to a given torque (T), the values of ©, 8 and L are
comstanl. Henes shear stresa produced s pmp-nrt&nn&] &0 the radivs K,

T=

r= R oar E = conatant .11
If'q is the shear stress induced at a radius ' from the centre of the shaft then
X2
= R r .||116|E’}
1 ﬂﬂ
—-— i 16,1
But L from aquation (16.1)
[
; 7 ‘I : LA16.3)

From equation (i), 1L is elpar 1.|:|.|!L shear sbress at any pabot in the shall is proportional
to the distance of the paint from the axis of the shaft. Hence the shear stress is maximum at
the cuter surface and shear stress iz zero at the ads of the shaft.

16.2.1. Assumptions Made in the Derivation of Shear Stress Produced in a
Circular Shaflt Subjected to Torsion. The derivalion of shear stress produced in a circonlar
ehall subjestied Lo Lorsion, is based on the following assumptions :

1. The material of the shaft is uniform throwghout.

2. The twist aiu-ng the shafs is uniform.

3. The shalt is of uniform circular section theoughout,

4. Cross-sections of the shaft, which are plane hefore twist remain plain after twiat.

. All radii which are steaight before twizt remain strealght after twist.

16.3. MAXIMUM TORQUE TRANSMITTED BY A CIRCULAR SOLID SHAFT

The maximum torgue teansmitted by a cironlar solid shalt, = ablained from the mai-
mun shear stress induced at the outer surfaea of the solid shaft, Conzider a shaft subjected to
a torgque T s shown in Fig, 16.8.

Let v= Maximum shear sbress induced at the outer surfieee

B = Radinz of tha shailt
¢ = Shear streas at a radius " from the centre,

Conakder an elementary circular ring of thickness ‘dr” at n distance v from the centre as
shown in Flg. 16.3. Then the aren of the ring,

dA = ardr

Fram equation (16.21, wa have

t g

5 r
Shenr strass at the radius r,
P

. r
qugraty
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Turning furee an the clementary civoular wng
= Bhear stress acting on the ring x Area of ring
= xdd

-— i ir hr]
-tnR:Emﬂ.r -EIIE

L1
T
R r

Mow turning maoment due te the turming foves on the elementary ring,
dT = Turning foree on the ring = Distance of the ring from the axis

- ; o Prrigle w

= % % Rarldr _[18.3{A]]

- The total turning moment (or total torgue) is obtained by integrating the above
equation bebween the limits (0 and &

T Lﬂd'r = _[:i % Tmraly

4

'EIEH:HRT:::HE:HHF'
x (DY .. D
I'I:J-CEE[E] [ R"E:I

n i n
-IKEIEIHIHE.ETBa o D]

Problem 16.1. A solid shaft of 150 mm diemeter is woed to transmil targue. Find the
Jl‘iﬂ'.'l:m!ﬂ-"rl’!ur'-q'lﬁﬂ fransrutied by the shoft if the meximum chear stress induced to the shaft is
a5 N fmm®,

Sol, Given :

Diameter of the shaft, £ = L33 mm

Maximuim ghear stress, 1= 45 Nimm?

Let T'= Maximum torque transmitted by the shaft.

Ulakn tion {16.4) To — 1P = — 45 1
sing equation {16.4), LE:IF' 15#-1“154]

= SBEZ0GEG Mamm = 29820686 N-m. Ans
Problem 18.2. The shearing siress 5 o 2ofid shafl is not to exceed 40 N mm? when the
torque transmitted s 20000 N-m. Determine the minimum dismeler of the shaft.
Sol. Given :
Maximum shear stress, © =40 Nimm?
Torque transmbifed, 1= 20000 M-m = 20000 = 10% H-mm
Let [ = Minimum dlameter of the shaft in mm
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Uzing equation [16.4),

n
T'm E t
L'I= a |II:J
ot [s [151"] . [.1.'5 xW] = 1362 mm. Ans
xT a x4

16.4. TORQUE TRANSMITTED BY A HOLLOW CIRCULAR SHAFTS

Torque transmitted by a heliow circular shaift is oblafied tn the same way as for a solid
shaft. Cansider a ballow shafl Let it is aubjected to & torque T as shown in Fig. 16.4. Take an
elomentary civcular ving of thickness '@ at a distence F from the centre a8 shown in Fig, 16.4.

Let R, = Outer radius of the shaft

R, = Inner radius of the shaft

r = Radius of elementary circular ring = ﬂ
dr = Thickness of the ring C vy,
t = Maximum shear stress indueed at outer .

gurface of the shaft
= Shear sbrass induced on the elementary ring
dd = Area of the elementary civeular ring
o Znr % dr

Bhear stress at the elementary ring is obtained from equa-
tinm {16.2) az

e

Fig. 16.4. Hollow shaf.

— (+ Here outer radius B = R;)
B, r
lxr
"R
Turning ferce an the ring = Stress « Avea = g = dd

_LE el q-lrl!
-Rqr: - Rn _.I
=Z'..:'.‘1'|:Ri1rj::|'r

Turning moment (@ on the Fng,
dT' = Turning foree x Distance of the ring from centre

=2né&.'rﬂ-ﬂaﬁlﬁrﬂ-#

The total burning moment (or total torque T is obtained by integrating the abave equa-
tion betwean the limits B, and 8,
L Ry T 3
T= al = En-—r" dr
jn; L, Ry ’
=2 x r dr
=2 p-ly _
i~ tard R, are constant and can be taken outside the integral}
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_E { !ﬁ'E-R-_'] A16.5)

Let D, = Outer dinmeter of the shaft
D). = Inner diameter of the shait.

Th = L -
1 R, 2 and R, —2'- :
Bubstituting the values of R, and K, in equation (16.5),

T [L;_n]* _[%]‘ “TJ—%I _D_fﬁ*

wh B
BERRE

s [B'-D¢ 2

“2% ® D,

= [p,*-D?

- 1[ e ] A16.8)

185 MOWER TRANSMITTED BY SHAFTS
Omee the expression for torque (T for & solid or a hollow shaft is obiained, power trans-
mitted by the shafts can be determined.
Lat N = r.p.m. af the shaft
T = Mean torque transmitted in N-m
o = Angular speed of shalt.

-

P
Then Power = gu'ﬂr - watls LA1ET)
Sl
=mx -:ll" ['." ﬂ-l:l' - l].ln]
w T ALET (AN

Problem 16.3. In o holiow circular shaft of outer and inner diameters of 20 cm and
IO e respectively, the shear stress & nod fo exoded 40 N/ mm®, Find the maximum torgue whick

the shaft con safely transmit.
Sol, Given -
Outer diameter, D) = 20 cm = 200 mm
Inner diameter, D, = 10 cm = 100 mm
Maximum shear stress, T = 4 Nimm®
Let 1= Maximum torgue tranamitbed by the shadt,
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Using equation {16.6),

i_pd i i
T_lﬂa_”] :1“1;[2':-1 - 100
16 Iy 200

T -

16
= §8004.56 Nm. Ans,

Problem 16.4. Two shafts of the same material ond of same lengths are subjected to the
same torgue, if the first shaft is of o solid cireular section and the second skaft is of hollow
eireular section, whose internal diameter is 213 of the outside dinmeder and the maximum shear
siress developed in each shoft i the same, compare the weights of the shafts.

(AMIE, Summaer 1988

. ’
.1nu[1“m:{'?ul”m ]-ﬁaﬂﬂ-ﬂﬁﬂﬂmm

W T LA

Problem 16.6. A hollow ciroulor shaft 20 mm thick tranemits 200 §W power ot 200 r.p.m.
Determing the external dizmater of the shaft if the shear strain due fo forsion i not fo exeeed
000088, Take moculus of rigidity = 0.8 % 10° N/ mm’,

(AMIE, Surnmer 1989 Converted ta 5.1. units)
Sol. Glven :
Thickness, ¢t = 20 mm
Powar transmitted, P = 300 kW = 300,000 W
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Speed, N = 200 r.p.m.
Shear strain, b= 000056
Modutus of rigidity, C =08 = 10* Nfpm®
Lt D, = External dia. of shaft and
D, = Internal dia. of shaft
Then D=0+ 2 =0 +2 %%
; D, =D, - 40 11
'[..I'nng' eouation (16.7k,
200 = T
P:ﬁ ior Txw) or 1'E|ill'H]'|:|'l:II:l=Eﬂ::‘c—wi {or T = )
Ll G0
30000 2« G
I'= g —— = 14323.9 Nm
= 143239 » 1000 Nmm = 14323500 Neam.
Shear strass
il ~ Shear strain
Ehear stress
S e —
or 0.8 x L= = 0 008
Bhaar stress () = 0.8 x 107 = 000085 = 688 Nipmm?
Mow using sguation (16.6),
-] (o, - 0%)
=16 i -DEI
14823000 = - x 55.8 x 21— 80
or lﬁ = Dn
14323900 = 16 = I, A
. % GB.G =P8,
10603348 Dy = D) - DF = (D7 + D30 - D3
Substituting the value of I, from equation (i) into the above equation, wa get
10603346 D, = [D2 + (D) — 407D, - (D, - 40F]
= [0+ D + 1600 — 800D = 0,F ~ 1600 + BOD]
= (2003 + 1600 — BOD, WS0M, = 1600
& B0 + 300 — 40D 8000, — 200
= 180002 — 400, + 800) D, — 200
o Jj; g (D - 400, + BOQID, - 20)
at 6627 D, = D? - 20D 2 — 4002 + BOOD, + BOOD, — 16000
—ﬂu - I':|E|D + ]E‘Cﬂ}ﬂ = LK
ar D} - 6007 + L6000 - 66270, - 16000 = &
ar D} = 600 = - 50270, — 16000 = 0 i)
T!'I-E equation (i) is solved by teial and errvar mathod.
72
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(i) Lt Dy = 104 mum.
Substituting this value of 2, in the LS. of equation (i), we get
LHS. = 1005 - 6 = 100% - 5027 = L0 — LE0OMH
= 1000004 — S00000 - S02700 — LE0ED = 1000000 — 111ET} = = F1ET00
{tf) Lt Dy, =110 mm
Bubstituting this value in the LH.8. of equation {i), wa get
LHAE. = 110% = 80 « 110% - 5027 « 110 — L6000
= 1321000 - TIH000 - S520T0 — 16000 = 1331000 = 1294070 = 3E030
When £} = 100 mm, the L.H.5. of equation (if}, is negative but when D, = 110 mn, the
L.H.2, is positive. Hence the valus of I, lies between 100 and 110 mmi. The value of I is more
nearver o 110 mm as 36030 ie leas than 118700,
{iii) Let Oy = 108 mun.
Suohstituting this value in the LLH.S, of equation i), we get
LHES. = 108% — & = 1082 - G027 = 104 = 16000
= 1259910 — G55840 = 542008 = 16000 = L2550 - 1258716 = 194
The: value of [, will be slightly less than 108 mm, which may be taken as 107.6 mm. Ans.

Problem 16.7. A Aolisw shef® of ecfernad dinmeter 150 mrm franamils S EW poocer af
200 rop.m. Determine the macimum internal dicmeter i the maximpm stress in fhe shaff (s nof

b exceed 60 N FmmE, {AMIE, Surnmar 159590)
Sal. Given :
Extermal dia., Dy = 120 mm
Power, P = 300 kW = 300,000 W
Speed, N = 200 r.p.m.
Max. shear strass, T = B0 Mimm®
Tt D:- = Internal dia. of shaft
Using equation (16.7),
F= % ar  S00,000 = h—"fﬂ
SO0 = G
I'm -"-"E—I-;Eaﬂ— = 143239 Mm
= 143239 =« 1000 Mmm = 14328800 Nmm
Maw uslng equation (16.6),
4 4
T= % TR %
1 4
ar L43EHI0 = l—uﬁ % G0 ® %—]
14323900 = 16 = 130
ar — = 1204 - [}
145902000 = 20TIE000 = .ﬂl"
ar .U:-'1 = 20TEHNNI0 = 145902000 = 61458000

L = (G14R8000)7 = 8.5 mm. Ans
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Problem 16.8. Find the maximum shear stress induced in o solid eircular shaft of
diameter 15 cm when dhe ahaft trenzmite 150 EW power af 180 rpom.

Sol. Given :
Ditameter of shaft, P w13 cme= 150 mm
Power transmitted, P = 150 KW = 160 = 105 W

Spead of shafi, M =180 rp.m.
Let 1 = Maximum shear stress indoeed in the shaft
Power transmitted is given by equation (16.7) as
2T
P= B0 .
2ax 180 =
0 e —
160 x 1 80
150 = 107 = B0 .
) T w = TA8T.T Nm = T857 700 Mmm
Mow using equation (16.4) as,
"
Ts = =¥
THETT00 = TEE x t % 1505
16 = TaETI
e " 12 Nmm?®. Ans.

Problem 18.8. A solid cylindrical shaf? is fo trangmil 300 kW power af 100 rpm.

{al If the sheor stress is nod o axceed 80 Nimum®, find its digmater.

0B} What percent saving in weight would be obeained if this shaft is replaced by a hallow
ohe whose inferaal dicmeter equels to 0.6 of the externoel diameter, the length, the maoferinl nad

murcimpem shear stress bedng fhe same 7 CAMIE, Wintar 1983)
Hol. Givan ;
Power, P ) kW = 300 = 10% W
Bpead, A= 100
Mz, shear siress, T = B0 M'mm?®
[ex) Lt I = [a, of solid shaft
Using equation (16,7},
E=NT
" !E.rEl:“:I 1) = T
b b
i = 104 = 1
300« 107 = 60
Ts= W = 246478 Nm = 8647800 HD'I-'F“

Mow using equation (1641,
- _I _l
= T wxx gy BES4TAND = 16 w A0 I
o= 16 = 2BE4TA00
B o« B0
= gay 1220 mm. Ans

T
] = |31.8 mm
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[B) Percent saving in weight
Let D, = External dia. af hollow shaft
L, = Internal dia, of hollow shaft
=06 = Iy (glven)
The length, material and maximum shear slress in solid and hollow shafts are given the
same, Henee tovgue transmitted by solid shaft is egual to the torque transmitted by hollow
shaft. But the terque transmitted by hallow shaft is given by eqoation {16.6),

s LUsing equation {18.6),

Ed_ '
_iﬁftﬂi ﬂ:-]

~ 16 Dy
n [0, - (0 oyt
_x bt M e B B - P o=06D
T B00 = D, [ A o
(D' - (06 D)1
= Gl = _;
iy
But torque transmitied by solid shaft
= 2B64TE00 Nmm
-~ Eguating the two torgues, we get

GAT04 Dy*
2B64TA00 = x B x |~ p— | = wx 50 x 0.8704 D}

b
-

1k ]
- DD = L_E@_Ed?m ] = 1276 mm = say 128 mm

mw al = AT
& Internal dia. D =06 = [t =06 = L2 = TE.BE mm
Mow let W, = Weighe of aclid shaft,
and W, = Weight of hollow shafi.
Than W, = Weight density = Arvea of solid ghaft = Length
= E D w L {where 1 = waight density]
Similarly W, = Weight dengity = Area of hollow shaft x Length

=wx T (BF-DAxL
i+ Roth shafts are of same lengths and of same material)
Now percent saving in waight
F'i'I: - wﬁ.

m 1 1K}
W,

wx 20w L-we S (0E - Df1x L
.4 4 = 100
w:%ﬂi-ﬂf-

| T ]
= 15'_'“;':'1:"!'3'_-“'-":.—P s L0 [Canc:all:ingw:-e E e L]
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129% _ (1987 - 75.8% 14834 - -
(145" - 75.87) 100 = 4884 - (16364 EEBE:IHUD

i it TS 14454
14884 = 104E6
= liEiEn'I-' ¥ 100 = 28.66%. Ans.

Froblem 16.10. A solid steel shaft has fo transmit 75 kW at 200 r.p.m, Toking allowable
shenr etress as 70 Nimm?, find suitoble diameder for the shaft, if the mazimum torque trang-
mitted at each revoliction exeeeds the mean by 0%, (AMIE, Summer 1978)

Sall, Given |
Power transmitted, Pe 76 kW= 762 108W
REM. of the shaft, N = 20
Shear stross, t = 70 Nimm*
Let T'= Mean torque transmitted
T = Maximum torque transmitted = 1.3 T
I} = Soitable diarmeter of the shaft
Power s given by the relation,
2aNT
a W—
axxd0=T
fill
T
P % = 550,58 N = 3580880 Nonrn
: T = 18 = 1.3 x 3550980 = 465574 N,
Maximum torque transmitted by a solid shaft iz pivén by equation (16.4) as,
i

Tm:"'ﬁ wtw [P

or 76 % 10% =

e -iEEEE‘H:I—nEnTEI'uD*

1
ﬂ=(lﬁ—“ﬂmﬂj = 6857 mm = Tomm, Ans

76

Department of Mechatronics Engineering, NCERC, Pampady.




MR 306 : MECHANICS OF SOLIDS

16.8. EXPRESSION FOR TORQUE IN TERMS OF POLAR MOMENT OF INERTIA

Polar moment of inertia of a plane avea is defined as the moment of inertia of the area
ahout, an axis perpendieular to the plane of the figure and passing through the C.G. of the
area. L is denoted by symbol J,

- lﬂu torque in ternis of polar moment of ineetia (J) 1s obtained from equation [16.3 (4] of

Tha moment (T an the cireular ving is glven by equation [16.3 (4)] as
1 T 1
dgla=1 x— "=
i il thxr’q'r Hr’xﬂnr::.ir

1
=Er“|.ﬂ (v dA = 2 dr see Fig, 18.3)
I it T i
v Total torque, THL-'.ET'-.L Erldﬂ -ﬁfriiﬂ. i)
But ' dA = Moment of inertia of the elemantary ring about an axis perpandicu-
1!:|H|: the plane of Fig. 16.3 and pussing through the centre of the
CITCRE,

K
Lrg dA = Moment of inertia of the dircle about an axis perpendicular to the
plane of the circle and passing through the centee of the cirede

=

= Polar moment of inertia () = 1A
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Henes squation (i becomes as

i
- l - - r_;!- dA
o [ 4 -{n ]
r. = A16.8)
; g B
Bast from egquiation (1611, we have
T e
R L
T _x 00 16,9
4 B L

whare O = Modulus of vigidity
@ = Angle of twiat in radiation
L. = Length of the shaft.

16.7, POLAR MODULLUS
Polar modulus iz defined as the ratio of the polar moment of inertia to the radivs of the
shafl. It {2 also called torsional section modales, Tt is denoted by 3‘,- Mathematically,
of

E.r'ﬁ

{a) For a solid shaft, J= q—’; o

e Lpt
z 82 32 _.T g L1610
»~ "R D2 16
(b) Por a hallaw shall, J = 22 (B!~ DjY) LA16.11)
S P AR Al
z =3 = {Here R is the outer radius}
>
A - i
[+ m-3
= | L]
—Lﬂ'.-_'. 'D; ]
= = 1. pa 1B
= D2 6o, " o )

16.8. STHENGTH OF A SHAFT AND TORSIONAL RIGIDITY

The strength of a shaft means the maximum targue or mazimum power the shaft can
Lransmit.

Toralonal vigidity or stiffness of the shaft is defined as the product of modulus of rigidity
{0 and polar moment of inertia of the shaft {1, Hence mathematically. the torsional rigidity is
given as,

Torsional rigidity = O = J.

Torsional rigidity is alse definad as the torque requived to produce a twist of ane padisn

pier unit length of the shaft,
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Lat a twisting moment T produces s bwist of B redians in & shaft of lemygrth L.
Using equation {16.9), we have

:1:_1:_-'-'_3 =L
T L or O=J= B
But C ® of = Torsional rigidity
T=L

5 Tarsional rigidity =~ =
If L = one metre and & = one radian

Then tersional rigidity = Torgue.

Problem 16.18. Determine the diameter of a solid ateel shaft whick will transmit 30 kW

wf LE0 ropomr. Also determineg e length of the shay if the feiat must ref exceed [ oper the entire
.fi."."l.g!‘ﬁ The marimum shear sivess is limited fo &80 Nimm®. Take the ralue of moaledis of rigids

= & e J0F NimemE
Sol. Given :
Power, P 00 kW = 80 x 107 W
Bpeed, M= 160 r.p.m,
- _ s H . . = L . 5
-ﬁ-!'ls'!l‘-ﬂft'-"l-ﬂt-. =1 ar 180 radign { I = 180 ra.l:ll.anJ

Max. shear stress, t = B M'mm?

Modubus of vigidity, © =& = 107 NAinm?

Lt £ = Diameater of the shalt and
.= L-E'I'igﬂ'l of the lh!ﬂ..

() Miameter of the shaft

Ueing equation (16.7),

o
5 = 107 w B0
7= ﬁ = 5371.48 N-m = 5371.48 x 10* M.mm
Now wsing equation {16.4),

A
T= 2
16

or MTl.wﬂiu}=i1HﬁDHD3

b o BETLABx 107 x 16 _ ASEME
o Gl

I¥ = (455946007 = T6.8 mm.  Ans,

(i) Length of the shaft

Using equatian (16,71,

R &}
R L

m' Bx 10! xx D 188
L. i+ Bam ,ﬁ-—radlm
o 168 LI T
2

L .
ar A 1802

Department of Mechatronics Engineering, NCERC, Pampady. 79




MR 306 : MECHANICS OF SOLIDS

MODULE 4

STRESSES IN BEAMS

When sore external load acte on a banm, the shear force and banding maments are set
up at all sections of Use beam, Due to the shear force and bending mament, the beam under-
poes certaln deformation. The material of the beam will offer resiztance or slresses agamat
these deformations. These steesses with certain assumptions can he saleulated, The streases
introduced by bending moment are known as bending stresses. In this chapéer, the theory of
pure bending, expression for bending stresses, bending strass in symmtrical and unsymmetrical
sactions, strength of a beam and composite beams will be discussed.

7.2 PURE BENDING OR SIMPLE BENDING

If & length of a beam is subjected to a constant bending moment and no shear foree
(f.., gero shear foree), then the stresses will be set up in that length of the beam dus to E.M,
omly and that length of the beam is suid to be in pure bending or simple banding. The stresses
zot up in that length of beam ara known as bending stresses,

W W
A B
{a) E - o
4—;—J4 — pa—i ¥
R,= W Ag= W
f
E ] ;w
|.-r . '| g’ TR LA L
‘.!II T E TESTINTE : E.I.lﬁwm [:l
W = !
LE.NW
I
¢ 1:1.'.-.""'.'
2 %
Bk
. E.M. diagram WA
Fig. 7.1

A beam slmply supported at A and B and sverhanging by same length at ench support
is shown in Fig. 7.1 A point load W is applied at each end of the overhanging partion. The
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g F. and BM. for the beam are drown as shown in Fig. 7.1 (b) and Fig, 7.1 (e} respectively.
From these diagrams, it 18 clear that there is no shear foree between A and B but the B.M.
wetwean A and- B is constant

This means that between A and B, the beam is subiected to o constant bending monvent
anly. Thiz condition of the beam between A and B is known a5 pure bending or simple bending.

7.4. THEORY OF SIMPLE BENDING WITH ASSUMPTIONS MADE

Bafore diseussing the theary of simple bending, let us see the assumptions made in the
theory of aimple bending, The fellowing are the important assumptions

1. The materinl of the beam s homogeneous® and isotropic®™.

2. The value of Young's madulus of elazticity is the same in tension and compression.

4. The transverse sections which were plane before bending, remain plane after bending
nle.

4. The heam is initially straight and all longitudinal Alaments bend into crcular arcs
with a enmman eentra of curvatere.

5. The radius of curvature is large compared with the dimensions of the cross-ssclion.

6. Each laver of the beam is free to expand or contrack, independently of the layer, above
or bilow B

Theory of Simple Bending

Fig. 7.2 (u} shows a part of & beam subjected to simpls bending. Consider a small length
#e of this part of beam. Consider two sections AR and CN which are normal to the axis of the
beam N — N. Due to the action of the bending moment, the part of length & will be deformed as
shown in Fig. 7.2 (b), From this figure, it is clear that all the layers of the beam, which wera
priginally of the same length, do not remain of the same length any mora.

The top layer such as AC has deformed Lo the shape A'CY, This layer hag been shoriened
it lta length. The bottom layer BD has deformed to the shape B'DF. This loyer has been elon-
gated. Fromm the Fig. 7.2 (b), it is clear that some of the layers have heen shortened while some
of them are elengated At a level between the top and bottom of the beam, there will be a layer
which & neither shortened nor elongated. This layer is known as newtral layer or nautral
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surficee. Thia layer in Fig, 7.2 (b) is shown by N' = N' and in Fig. 7.2 (a) by N =N The line of
intersection of the neutral layer on a eroes-section of a beam is known a8 neutral axis {written
&6 4.4,

The layers above N — N (or N' = A7) have been shortened and those below, have been
elongated. Due ta the decrease in lengths of the layers above V- N, these layers will be sub-
jected to comprossive stresses. Do to the increase in the lengths of layers below N - &, these
layerz will be subjectad to tansile streses,

Wa also see that the top layer has been shortensd maximum. As we proceed towards the
layer N = N, the decrease in length of the layers decreases, At the layer N — N, there is no
change in length. This means the compressive stress will be maximum at the top layer, Simi-
larly the tnereass in length will be maximum at the battom layer. As we proceed from hottom
layer towards the layer N = N, the increase in length of layers decreases. Hance the amount by
which a layer increases or decrenses in length, depends upan the position of the layer with
respect to N - N, This theory of bending iz known &5 theory of simple bending.

7.4. EXPRESSION FOR BENDING STRESS

Fig. 7.3 {a) ahows a small langth &x of a beam subjected to a simple bending. Due to the
petion of bending, the part of length &x will be deformed as shown in Fig. 7.5 (6} Lot A'E and
C'0 meet at O,

Let R = Radius of neatral layer NN
B = Angle subtended at O by A'5 and O produced.

]
Sirass Disgeas

Fig. 7.4
74.1, Birain YVariation Along the Depth of Beam. Consider a layer EF al a distance
¥ below the neatral layer NN. After bonding this Inyer will be elongated to E'F.
Original langth of lnyer EF = fx,
Also length of neutral laver NN = .

After bending, the length of neutral layee NN will remabs uschanged. But length of
layar E°F° will increass. Hence

AN = NN = S
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Mow from Fig. 7.3 (0],

NN=R=b
and EFciR+y)ixd {+ Radius of E'F = R + y)
But NN = NN = .
Honca fc=R=0
[nerease in the length of the layer EF
sEF-EF=(R+y)8-Ex% (- EF=tx=Rx8)
=y &b
Siralm in the bayer 8
Inerease in langth
Original Jength
-ﬁ-;—’j ( EF=dz=R x8)
-
R

As R is constant, hence the strain in o loyer ie proportional fo ity distance from the
newtral axis, The sbove equation shows the variation of strain along the depth of the beam.
The variation of strain is linear.

74.2. Stress Variation

Let @ = Strass in the layer EF
E = Young's modulus of the beam

Btress in the layer EF

Then B = Strain in the layer EF
__9 . in BF =&
—[lﬁl [ Sirgin in EF ﬂ]
i)
u:EE%-gx}' I

Sinee E and B are constant, therefore stress in any layer is directly proportionsd fo the
distnee of the layer from the nentrel loyer. The equation (7.1) shows the variation of slress
aleng the depth of the beam. The variation of stress is linear.

In the above case, all layers balow the neatral layer are subjected to tensile streases
whereas the layers above neutral layer ave subjected to compressive streases. The Fig. 7.4 (=)
ghows the stress distribation.

The equation (7.1) can alse be written as

o E A7.2)

7.5. NEUTRAL AXIS AND MOMENT OF RESISTANCE

The neutral axia of any transverse section of o baam 1= defined as the line of intersection
of the neutral layer with the transverse section. It is written as N.A.

In Art. 7.4, we have seen that if a section of a bearm |s subjected to pure sagging moment,
then the stresses will be compressive at any point above the neutral axie and tensile below the
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newtral axis, There is no stress at the neutral axis. The stress at _J‘.
a distance ¥ from the neutral axis is miven by equation (7.1 as rrorrreeerreeee ¥
¥
= % E ¥ j‘_
Fig. T4 shows the cross-section of a beam, Lot M.A. ba the T R
neutral axis of the section. Congider a smail layer al a distanee y
from the neutral axis, Let d4 = Ares of the layer,
Mow the foroe on the lapar
= Btrees on layer = Ares of leyer Fig, 7.4
= kA
3 0w B
= E HJ.'H{L"] .-[i] [ o R -}']
Total foree an the beam section is obtained by integrating the above equation.
- Total fores on the beam section
= J% ® oy owadd
I . .
=g]r= A (- & and K 15 constant)
But for pure banding, there f2 ne force on the sectinn of the beam {or foves is zeral.
E
Efrwaa=o
E
oF _[,1.- o i o= nnﬁunmhl:eam

Now v x dd reprasents the moment of area o4 about neatral axis. Hence [ v = dA repre-
gemits the moment of entire rrem of the section sbout neutral axis. Bul we knew that moment of
any area about an axi= passing through its centroid, is slso equal to zera, Hence newtral axis
eoancides with the centraldal axiz. Thus te eentroidal axis of & section gives the position of
neutral axis,

781 Momenl of Resistance, Due to pure bending, the layers abpve the BNA, ave
subjectad to eompressive stresses whereas the layers below the N.A. are subjected to tensila
siresses. Due to these stresses, the forces will be acting on the layers. Thesa forees will have
moment about the M.A. The total mament of these foeces ahout the WA, for a section is known
as mament of resiatance ol that seetion.

The force on the bnyer at n distance ¥ Fram neutmal axis in Flg. 7.4 is given by equation (), as

E
Frrce on Layer wﬁ:uj-'xdﬂ
Moment of this foree aboat NLA.
= Fores on laver = ¥
:}E; wymadd oy

-:-E:-c_'r!:u:ntﬂ
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Total moment of the foress on the section of the beam (or seement of resistanne]
E Ep 4
FIE xy wdd = 3L w il
Lot M = External moment applied on the beam section. For equilibrium the moment of
registance offered by the section should be equal to the extarnal bending moment.
Er s
M= -EJ’_}' wold.

But the expression [ ¥ » dA represents the moment of inertia of the area of the gection
about the neutral axis. Let this moment of inertia be I,

M= % wl ar j}i = ﬂ (T80
Bt from equation (7.2), wa have

g

¥ &

M o E

e ; "% T

The equation (7.4) is known as bending aquation.

In equation (7.4}, the different gquantities are expressad in conslatent units as given
bedow :

M iz expressed in N mm ; J in mm*

a is expressed in Nimm? ; y in mm
and R is expressad in Mimm® ; B in mm.,

7.5.2. Condition of Simple Bending. The equation (7.4) is gpplicable to a member
which is subjected to A constant bending moment &nd the member is ahsolubely free from
shear force. Bul in actual practice, 8 member 18 subjected to such leading that the BM. varies
from section to section and alss the shear force is not zero. But shedr foree 18 zero at & section
where bending momant is maximum. Hener the condition of simple bending may be assumed
te be satisfied at such a section. Hence the stresses produced due to maximum bending mis-
ment, are ohtained from equation (7.4) a5 the shear foroes at these sections ave genarally zevo.
Hence the theary and equations discussed in the sbove articles are quite sullickent and give
pagults which enables the engineers to design beams and structures and caleulate their stresses
and strains with a reasonable degree of approximation whare B.M. is maximumm.

7.6. BENDING STRESSES TN SYMMETRICAL SECTIONS

The neutral axis {M.A.) of a symmetrical saction (such as cireular, rectangular ar sguare)
lins at & distance of @2 from the outermost Inyer of the section where d ia the diameter (for a
cireular section) or depth (for a rectangular or a squarve section). There | o stress at the
neutral axis. But the stress at o point L8 directly proportional to its distance from the neutril
axiz. The masimum stresr teboes ploce at the outermost layer. For a simply supported beam,
thers |2 & compressive stress above the neutral sxis and a tensile stress below it IF we plot
these siregses, we will get a (iFure as shown in Fig. 7.6,
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e, —e
Fig. 7.5
Problem 7.1, A steel plate of widih 120 mm and of thickress 20 mon iz bend indo o

cireudar are of rading 10 m. Defermine the maoximum séress induced and the bending rmomand
which will produce the maximum stress, Take E = 2 x 10F Nimm?,

Sel. Given :
Width of plate, b = 120 mm
Thickness af plate, § = Bl mm
1 5
Moment of inertia, [= %-%:ﬂ « 10 mun*

Radius of curvature, R =10m=10x 10° mm

Frung's modulus, Ew2x ¥ Nmmt

Lat Dy ™ Maximum sivass induced, and
M = Bending moment.
o E

Uslmg equation (T2, ==
y R

= o= % Yy -3}
Eguation (i) grves the stress at a distanes ¥ from N.A

Atress will be maximam, when p ks maxienwm, Buly will be maximom at the top layver or

bottom layer, d
£
L 10 mmn,
Mow equathon (1] can be wrilben as
E
Eo R E ¥

2y 107
=m"x—ﬂ;,:em=mmmﬁ. Ans.

Fram Enl.p.l&bim (7.4}, we hvve

M _E
i
E 2u 1t

Me= xja=———— « 104
E" mxm*ke 1

=16 % 14¥ M mm = LB kNm. Ans
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.

Problem 7.2 Calenlofe the moximum stress® induced in a cost iron pipe of externel
digmeter 40 mum, of interngl diometer 20 mm ard of length 4 metre when the plpe i supported
al tts ends and earries o pelnd load of 80 N at its cendre,

Eal, [riven :

External dia,, 0 = 40 mm

[nternal dia., d = 20 mm

Length, L= m =4 x 1000 = 4000 mem
Point load, W=80H

In case of simply supported beam carrving a point load at the centre, the maximum
bending moment is at the centre of the beam. i

Fffffffffffff}?ﬂf |
':':l]m ! [ Aren of epoas-geetlon
Fig. 76
And maximum BM, = 0k
M, .
. Magimum BM, = o0 :m =8 x 104 Nmm

o M=8x 108 Nmm
Fig. 7.6 (b) shows the cross-soction of the pipe,

Moment of inertia of hollow pipe,
f
{a i (DA - 9]
= = [40% - 204 = - [25600D0 - 160000]
B4 A4
e 117808, mm?*
Now uzing equation (7.4},
M a ,
;—I; .u{”

when y is maximum, strees will be maximum, But y is maximuem at the top layer from the N A,

= — = — = Al mm

Yo =3 %y
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The above eguation (i) can be wrikten as

Ly

Fevan

Figne = Tr-'"n:l-:

B 10? =20

]
s = 1158 Mimm®, Ans

7.7. SECTION MODULUS

Beetlon modulus is deflned a3 the ratio of mement of inertia of p section about the neutral
st o the distancs of the outermast layer from the neutral axis. It iz denoted by the symbel 2.
Hemee mathematically gectlon modulus is given by,

7o (7.5}

Froax

where I = M.0O1 about neuarral axis
and ¥, = Distance of the outermaost layer from the newtral axis.

From equation (7.4), we hawe

M o
I ¥
The stress o will be maximum, when y i8 macimum, Hence above equation can be
written as
M One
I ¥
H: ﬂm, _f“-
.'r.rh.-l'd
But. L =
e
Han 2 )

In the above squation, A j;u:l-m maximim bending moment (6r momant n-l' resiatance
affered by the section). Hence moment of resistance offered the section is maximum when
section modulus Z iz maximum. Hence section madulus represent the strength of the section.

7.8, SECTION MODULUS FOR VARIOUS SHAPES OR BEAM SECTIONS

L. Rectangular Section -
Moment of inertia of a vectangular secticn ahout AT T
axis throwgh its C.0. (or through BoA ) 1= ghven by, i
;b .
=Tg | B Pl
Distance of cutarmost layer from N.A. is given by, |
|'.E 3
Yoe™ . |

Section modulus is given by,
Fig. 1.7
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AT

Here =T T

o — g —

/

1
— = b LA7.8
an [EEF = b (7.8
3. Circular Section
Far a circular section,

=}.L‘ el L .A7.9)
- [E]

T
Here I=E[ﬂ4—1f'l
(]
mnd Yoes = g
T
—[D* -dt)
2ot B
Fevar &
'-.E]
fl
=g IDV-d'Tmam

Problem 7.8, A aantilever of lengéh 2 mebre fuils when g loed of 2 EN s applied ot the
free end. If the section of the beam s 40 mm x 60 mm, find the stress af the failure.

Bal. Given :

Length, L=2m=2%10% mm

Load, W=2kN=2000 N
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Beetion of beam bz 470 mm » 60 mm.
Width of barm, b= 40 mm
Depth of beam, o = & mm

kN

Ehhk

» Al o o

32 —

L

——— 2 ——H

Fig. 7.11 Fig, 710 )

Fig. 7.10 {2} shows the ssction of the beam.

Section modulus of a rectangular section is given by equation (7.7).
bd® 40 x GO°

LN} 2 = e— ﬂ

f
Maximum bending moment for o cantilever shown in Fig. 7.10 is at the fixed end.

M=WsxL=20=2x 107 =4= 10 Nmem

e D400 men?

l.-aL o = Strese at the failure
Using eguation (7.8, we get
M=o, .Z
i

max T F 24000

Problem 7.4. A rectanguior beam 2300 mm deep and 300 mm wide is simply supported

pugr @ apan of § m. What wniformly distributed load per metre the beam may corry, i the

bending strese is nof to exceed J20 Mimm®*,
Saol, Given :

wim dength
Drepih of beam, = B0 mom i .
Wideh of beam, b = 3} mm
Length of baam, L=8m S
Max, bending stress, —""'i"— _"'EL_
Dy = 120 Nimem?
Let w = Uniforraly distributed load per Fig. 7.11
m length over the henm
{Fig. 7.11 {a) ehowe the section of the heam}. W— S0 mm —#H
Section modulus for a reckangular section is given by equa- T
tion (7.7} 200
¥ 300 x 200 n
o 3=MT=T"EUWMI l

Fig. 7.11 im}
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KMax B.M. for a simply supported beam carrying uniformly distributed load as shown in
Fig. 7.11 is at the centre of the beam. It is given by
2 2
M:wa :I:"”':E [ L=3 |
a 8 -
= Hen M = B = 1000 Nmm
= By Mmm L 1 o= 1000 miend
Mow using eguation {7.6), we get
M=o _ .2
ar AO00r = 13 = 2000
w -m’;u— r‘!gg” Y09 - 50 % 1000 N/ = 30 KN/m.  Ans.

Problem 7.5. A reciongulor bearm 300 mm deep (s simply supporfed over a spea of
4 metreg, Deferming the wniformly distribuied lood per meire aliich the beam mey corry, 0of
the bending sérese should not exceed 120 Nimm?, Take [ » 8 x 18% mm?*.

CAnnamalai Tniversity, 1901)

Bol. Given :

Depih, o = 3K mm

Bpamn, L=4dm

Max. bending stress, g, = 120 N'mm?

Moment of inertin, I =& x 100 mm® i Jargeh
" 'LEI'E[I.I'mw = [LILL. per matre langth ovar the . 'ﬁ'ﬁ?ﬁ‘ﬂﬁ"-ﬁ&‘:ﬁﬁﬁ'ﬁfﬁ [T 5

R . L&

The bending stress will be maximum, where 2 sl 2m
bending moment ls maximum, For a simply d4m .
supported beam carrying U.D L., the bending 2w 2w
mament 8 maximum at the centee of the heam " o
[ie., at point O of Fig. 7.11 (b]] Fig. 7.11 (&)

i Max BM =8ir=2-2w=1l

=dar = B
1 ol .
= T Wi AJMH-WEL ﬂi-Hrﬁw
8 8
= Zar w10 Moun
ar M = 20MMke Mmm
Bow wslng egquation (7.6, we get
M=o, %2 i}
I 8x10" 4 20 ]
e e o ——— - - o —— ia 1[5}
whare ] = TEq [: Yoz =5 = 5 Bl
Henee above eguation () becomes az
B x 10®
20000 = 120 =
" 150
120 = B x LO*
ar W 0« 150 = F200 Mim., Ans.
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Problem 7.6. A square beam 20 mm = 20 mm in section and 2 m long is supported af the
ends. The beam foils when a point lood of 400 N is applied at the centre of the beam, What
nniformly distributed load per meire length will browk o cantilrver of the same material 40 mm
eoicle, 60 mm deep and 3 m long 7

Hol. Qiven lmn

Diepil of beam, ol w 20 mm

Width of beam, b = 20 mim

Length of beam, L=2m

Paint laad, : W=4D} M Fig. 7.12

In this problen:, the maximum stress for the
gimply supported beam is to be calculatad firat. As the material of the cantilover is same as
that ef slmply supported baam, hence maximum sirass for the cantilever will also be same as

Zm

BN

that of simply supported beam,

Fig. 7.12 (a) shows the section of beam. - P 20 mm —H

The section modulus for the rectangular section of simply sup- |
ported beam is given by equatian {7.7). og

mim
ba® 20w ZDT 4000
2 R "3 mim J,_ |

Mex. B.M. for & simply supported beam earrying a peint load

at the centre (as ehown in Fig. 7.12) is given by,
wx L A0 3 . Fig. 7.12 Lk
M= —— "1 = 200 Min
= B0« 1000 = 200000 Nmm
Let o, = Max. stress induced
Mo using equation (7.8], we gel
M=o, . &
ur 200K = LR T
e TO0D

Mow let us consider the cantilever as showmn in
Fig 7.18. Ty Ly -,

Let  w = Uniformly distributed load per m run 4

Maximum stress will be same as in case of sim- 3 A === E

piy supparted beamn. )
., = 150 Moam® Fig. 7.18

Width of cantilever, b =40 mm b A3 i =

Depth of cantilever, & = G0 mm

Length of cantilever, L=3%m

Fig. 7.13 () shows the ssction of cantilever beam. A
H!
Section modulus of rectangular section of cantilever = 'y J_
3
=40 ‘:;'“ . = 24000 mm? Fig. 7.13 (a)

Department of Mechatronics Engineering, NCERC, Pampady.

92




MR 306 : MECHANICS OF SOLIDS

MWaximum B.M, for a cantilover

2
e —— « 4 5w Nm = 4.5 » 1000w Neam

M = 4.5 x 1000w Nmm
Mow using eqgiation (7.6), we get
M=o, . &
or 4,6 x 1000z = 150 = 340}

160 = 24000
W BOO Mim.  Ans.
Problem 7.7. A heem is simply suppocted and carries o uniformdy disteibuted lond of
40 kN'm. run over the whele span. The section of the beam i rectangulor koving depth oz
500 mm. If the maximum stress in the matertal of the beam is 120 Nimm® and moment of
inertia of the section is 7 % 10F ma?, find the span of the beam.

Hol. Givan ;
1.B.L., w = 40 kMNim = 40 = T N'm
Tiepth, i = HH] mm

Max, siross, a__ =120 Niram®

M.OL of section, =7 = 10° mm*

Let L = Span of simply supported beam.

Bection modulus of the section is given by equation (7.5), as
i

BE=—
Yo

% 7 260 mmm

d
where y_ = —*=
moe -2
L]
2=2210 08 105 mnd

The maximum B.M. for & simply supparted beam, earrying a UD.L. aver the whole epan
1

A
isaLll-mv:@mtmanl:-1'l:hr.'.l:-=nm!n:u:llnhauqmdt::uEjé .

w. I3 40000 « I*
Me=g="3

= SO00LE Nm = 5000L* x 1000 Mrmm
Mow uzing equation (7.6), we get

M-um.ﬂ
or GODD x 1000 x L¥ = 120 « 28 « 10°
190 x 28 = 10°
i VS
o L= 2000 = 1000 *

L= JME = B.157 m say B.20 m.  Ans,

Problem 7.8, A tismher beam of rectangular section is fo support @ laed of 20 kN uriformly
distributed over @ apan of 5.6 m when beam is simply supported. If the depth of section is to be
fusien the hreodth, and the stress in the fimber i not fo exceed 7 Nimm?, find the dimensions of
the crovg-gection
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Houwr woald vou modify the croag-section of the beam, if if carrigs @ corcendrated load of
50 BN placed at the centre with the some ratio of breadth to depth 7

Bol. Given :

Totnl load, W=20 kN =20 = 1000 N
Sepeam, L=36m

Max. stress, Foae =7 Mfmm®

Lt & = Breadih of beam in mm
Then degpth, _d = &b mm

-}

Saction modulos of rectangulur beam = %
ir ]

. L_.&,u::m ‘_%mﬁ,

baximom M., when the simply supported beam carvies a DL, ever the entive span,

g W
iinhthcﬁcnhr:bfﬂmhcamahdumﬂﬂlm%ﬂr—.

g
- 25 - ZONE238 _ gonp Nim

= G« 1000 Mmum
Mow using aguakion {7.6], wa gat

M=g, .2

=

ar m:ilﬂﬂl:I:TimT
ar b o SO0 1000 _ , oogst x 200

T=3
b = (LO2857 « LOERA
= 12447 mm sy 1245 mm. Ans.
and d =2b=2x 124.5 = 249 mm. Ans

Dirmension of e seclion when the boam carries o peiad loed of the centre.

B.M. ke maximuwm al the centre and it iz equal te W= L when the beam carries a polnb

logd at the centre.
W=l 20000 =36
s T 4
= DR0 2 1000 N
o, =7 MAmm®
2b*

and = 5 (-~ Im this cnse also o = 28]

Ulzing equation (7.8, we got
Maeg,_ &
28"

o 18000 = 1000 = 7 = a3

“ M = 1} N

L mﬂf 1000 _ o a7t 106

- bow (385714 & 10549 = 156.82 mm. Ans.
and d=%% (5682 = 31364 mm. Ans
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Shear Stresses in Beams

.1, INTRODUCTION

[n the last chapter, we have sgoen that when a part of a beam is subjected to a constant
bending moment and zaro shear force, then there will be only bending stresges in the beam.
The shear siress will e zero as shear stress is equal to shear foree divided by the area. As
ghear force is zero, the shear stress will alse be zero,

But in actual practice, a beam is subjected to a bending moment which varies from
gecthon to aecthon. Also the shear force acting on the beam s not sers. It also varies from
section to sectian. Due to these shear forcss, the bsam will be subjected to shear stressas,
Thesa shear stresses will be acting across transverse sections of the beam. These transverse
ghear stresses will produwee a complirmentary hordzontal shear atreases, which will be aeting an
longitudinal layers of the baam, Hence benm will alse he subjected to shear stresses. In this
chapier, the distribution of the shear stresa across the various sectionsz (such as Rectangu-
lar section, Cireular section, l-section, T-sections ete.) will be determined,

B.2. SHEAR STRESS AT A SECTION

Fig 8.1 {w) shows a simply supported beam carrving a uniformiy distributed load. For a
uniformly distributed load, the shear force and bending moment will vary along the langth of
the beam. Consider two gections AR and OO of this beam at a distance dv apart.

Aren, A = Ares of EFGH
Fig. 8.1
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Lt at the section AH,
F = Shear force
M = Bending mament
and at section OO, F+ dF = Shear foree
M + dM = Bending moment
I = Moment of inertin of the section about the newtral axis.

Let it i required to fnd the shear stress on the section AB al a distance y, from the
neutral axis. Fig. &1 (c) shows the cross-section of the beam. On the cross-section of the beam,
let EF be a line at a distance y, from the neutral axis. Now consider the part of the beam above
the level EF and between the sections AR and CD. Thiz part of the beam may ke taken o
consists of an infinite number of elemental evlinders each of aren dA and length dx, Considar
opme such elemental cylindar at o distance y from the neutval axis '

dd = Area of elemental eylinder
dx = Length of elemaental eylinder
¥ = Distance of elemental eylinder from neutral axis

Let o =Intensity of bending stress® on the end of the elemental cylinder on the

secton AR

o+ do = Intensity of bending strese on the end of the elemental cylinder on the

gection (I,
The bending stress at distance y from the neutral axis is given by equation (7.6} a8
)
=

0= — %)

~|E w|ao

For a given beam, the bending stress is a function of berding moment and the distance
 from neutral axis. Let us find the bending stress on the end of the elemental eylinder at the
peclion AR and alae al the section CLX

- Bending stress on the end of elemental cylinder on the section AB, (where bending

miomant is M) will be
= T 2y
Similarly, bending etrees on the end of elemental cylinder on the section CD, (where
bending moment s M + dM]) will be

g+ dd = w ¥y
[+ Onsection G0, BM, = W + 8 and bending stress = o + dioh
Mow let us find the forces an the bwo ends of the elemental cylinder,
Foree an the end of the elamental cylinder on the section AR
= Btress ® Aren of elemantal oplinder
= xdA

Department of Mechatronics Engineering, NCERC, Pampady.




MR 306 : MECHANICS OF SOLIDS

f
'-gh:;.lx:ﬂ il"_-ﬂ'l%x}']
Slmilarly, force on the end of the elemental evlinder on the section €D
= [ + des) A !
(M v d)
:+n;rﬂ.iﬂ. ['.'ﬂi-dﬁiwﬁj’:l

AL the two ends of the elemantal eylinder, the forces are different, They are acting along
the sume line but are in opposite direction. Hence there will be unbalanced forcs an the elemantal
eylinder.

<. Net unbalanced foree on the elemental evlinder
M+ dM)

7 xyan:l'.ﬂ.—%{a-cjlxd.i

-% xy o dd Y

The tatal unbalanced foree above the level EF and between the bwo sections AR and G
may be found out by considering all the elemental cylinders between the sections AR and CD
and abeave the level BF (i, by inlegrating the above equation (i),

. Total unbalanced fores

dd i’
'-J. : aJ‘nﬂ:'I ’FJ,I!-C:;H_

ald -
-T::An_r o JyuddednF)

whire A= Amea uftha&e:ﬁmnhnwthnlavalHF{nrahnwle
= furea of EFGH as shown in Fig 8.1 ic)

¥ = Distanes of the C.0 of the area A from the neutral axis,

Dhue to the total unbalanced force acting on the part of the beam abave the level EF and
betwaen the sections AR and CD as shown in Fig. 82 (o), the beam mav fail dus to shear.
Henee in ovder the above part may not fail by shear, the horizontal sectlan of the beam at the

level EF must offer a shear resistance. This shear resistance at least must be equal to total
unbalnnced foree to avodd failure due o shear,

Appa A,

& G
I HWE
o A=Y
-—IH ¥ /
Rl

- . E
R ) wlr |
M A N A
—
E ) [Pr—
i L]
Fig- 4.2
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Shear resistance (or shear foree) at the level EF
& Total unbalanced fores

=# xAxy (i)

Lot 1 = Intensity of horizonital shear at the level EF
b = Widih of beam at the level EF
Aren o which 1 is acting
b dy
Ehear force due to ©
= Shear stress ¥ Shear nrew
=1 oy L)
Equating the two values of shear foree given by equation (i) and (zde), we get

t:-:l!xfttl% k¥

=Py Ar [ % = F = Shear [ur-::u] «A81)
The shear stress given by equation (8.1) is the horizontal shear strese at the distance ¥,
from the neutral axis. But by the principal of complementary shear, the horizantal shear stress
is aceompanied by o vertieal shear stress € of the samme guantity.
Bametimes A » ¥ is also expressed as the moment of ares A about the neutral axis.

Note, In equation (.13, & is the sctual width at the level EF (Though bere & is same at all
lowvels, in mamy cases & may not be same sl all bevels) and [ is the wial moment of inértia of tha

sactlen aboet MA.

Problem 8.1. 4 wooden beam J00 mem wide ard 150 mon deep s simply supporied over
a span of 4 metres. If shear force ol @ section of the beam e 4500 N, find the shear siress at o

distence of 25 mm above the N A

Sol. Given :

Width, b = 100 mm T

Depth, o = 150 mm - M_L

Ehaar foroe, Fodsoo N =

Lat ® = Shaar stress ot g distancs of 25 mm above e
the neutral axis. ‘n‘ir‘

Ueing sguaticn (E.1], we gei

_ t=F. ﬁ A
where A = Area of the beam above ¥,
= 1k} 50 = 5000 mm? }""_""}';“"""'"_"‘!
(Shaded area of Fig. 8.2) Fig. 8.3
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¥ = Distanes of e C.G. of the area A from neutral axis

m 35 + % = 50 mm
T =M.OI. of the total section

_ ba?
12

]
- ﬁiﬁ = 28125000 mm?
b = Actual width of sectlon at a distance ¥, from N.A = 100 m
Substituting these values in the alove equation (1), we get
_ 4500 = 5000 = 50
" ZRIZH000 « 100
Froblem B.2. A beem of eross-gection of or lseseeles lriongle Is subjected fo o shear force
af 30 kN al a séction where base width « 150 mm and height = 450 mm. Determine :
(i) horizontel shear stress af the neutral sxis,
(1) the distance from the top of the beam where shear stress is moximam, and
(200 vplue of mosimum shear sres,
Sol. Given
Bhaar force at the ssstion, F = 50 ki = 30,000 N
Base width, C0 = 150 mm
Hedght, h = 450 mm.
(i) Horfzondal shear stress af the reutral nxia

T =4 N'mm®  Ans.

The neutral axis of the trinngle is at & distance of % o

hase or % frome the apex B, Henoe distance of newtrsl axis from

B will be = 300 mm as shown in Fig. 8.3 {a). The width of Fig. 8.4 {z)

the section at neutral axis is chtpined from similar triangles BCD and BNA as
NA 300
CcD 450
L A

thr.:— = e =
ar A “ﬂkﬂ'ﬂ' ;513’*15“ 100 .,

The shear stress at any section is given by equatlon (8.1} as
t=Fx *: b ' )

2w 450
3

where 1= Shear stress at the section
Fwm Shear force = 30,000 M

A= Araa above the axis at which shear stress L2 Lo be pbtained
[i.e., shaded arcn of Fig. 6.3 {a)]
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NA w300 100 = 300
R
¥ = Diatance of the C.G. of the area A from neutral axis

= 15000 mm?

-% # 300 = 100 mm
[ =801 of the total section about neutral axis

. : 1 E
. Besewidthx Hoight! [ Bxh® b n g widih of Tr':anquJ
36 36
3
7 150 = 460 -
36
b = Actoal width of the section at which shesr stress is to be obbained
& MNA = 100 mm.
Subsatituting these values in equation (£), we got

5 o
v = 30,000 %}m - Nimm?

158 x 450 .
b
= 1185 Nmm®. Ans.
(i) The distonce from the top of the beam where shear stress e maximum
Let the shear stress is maximum at the section EF

1063

at » distance x from the top of the heam as shown
in Fig. 8.3 (b). The distance EF is obtained fram almilar
triangles BEF and BCD &8
EF =
CD 450
: EF‘.-d;u ncﬂ=£ax15u=§.
The shear stress at the section EF s given by equa-
thon {8.1) s
Axy B
v=Fx oy i) Fig. .3 (b]

whare F = 30,003 N
A = Area of seetion above EF Le,, Area of shaded trirngle BEF

EFwx x {.. ]
= = = = E.F'
2 "3%3 \
i

¥ = Distance of C.G. of the Avea A from nantral aoxs

_3h Zx  2x4B0 2x _ [:}[:}-2—:]
3 3 q 3 3
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I =M.0.1, of ARCE about. nenitral nxis

_ 10 450
T 36
b = Width of section EF = %
Substituting these values in equation (6], we get
H
30,00 :.[I?] ¥ [Mﬂ- %] o
e = (L0006 [ﬂﬂﬂ - —]
150 = 4507 L x 3)

® | a

rm®

{ 247 ,
= (L OWHA0E :l..l S ol

For maximom shear stress % =0

4 m—glitlu af A =

oT = M;dﬁl- = 235 mm, Ans,
Henew, shear stress is maximurn at a distance of 225 mm from the top of the beam.
{#32) Value of Mazimum Shear Stress .
The value of maximusy shear stress will be obtained by substituting x = 225 mm In

" equation {ii)

3.

. 2
. Maximum shear stresq a (L0305 [:H-':Ii}n 226 = 3 X E::‘.EiJ

= 1333 Nmm®. Ans.
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MODULE 5

SHEAR FORCE & BENDING MOMENT

g.1. INTRODUCTION

Tha algebraic sum of the vertieal forces at any section of 8 beam to the right ar left of the
gection is known as shear force. It is brisfly written as 5.F. The algebraic sum of the moments
of all the foress asting to the right or left of the sectlon 12 known as bending moment. It is
sritten as B.M, In this chapter, the shear force and bending moment disgrams for different
types of beams {i.e., cantilevers, simply supparted, {ived, overhanging ete.) !ﬂrdiﬂ’qt'ent types
of laads (i.¢., point laad, uniformly distributed londs, varying loads ete,) acing on the beams,
will be considered.

2. SHEAR FORCE AND BENDING MOMENT DIAGRAMS

A shenr foree diagram is oné which shows the variation of the shear farce along the
length of the beam. And n bending moment disgram is one which shows the variation of the
bending moment along the length of the beam.

Before drawing the shear fores and bending mmﬁ; g, wa must know the
different types of beams and different types of load acting-on the baa -

6.3. TYPES OF BEAMS )
The fallowing are the important types of beams !
1. Cantilever beam, &, Simply supported l-rem.r._lgl
3, Overhanging beam, 4, Fixed beams, and

B, Continwons beam -
.3.1. Cantilever Beam, A beam which is fixed at one end and fres at the other end, is
known ag cantilever beam. Such beam is shown in Fig. 6.1,

" 3

£.3.2 Simply Supported Beam. A beam supported or resting freely on the supports at
its both ends, i8 known as simply supparted beam, Such beam js shown in Fig. 6.2.

Department of Mechatronics Engineering, NCERC, Pampady. 102




MR 306 : MECHANICS OF SOLIDS

6.43.2, Overhanging Beam. If the end portion of a beam is extended boyond the support,
guch beam s known as overhanging beam. Overhanging baam is shawn in Fig, 6.5,

Sirmply supported  Owerhanging

” partion '__::n:lﬂm;_r_: % %

I | |

f fhoswee 2 .

Fig. 6.3 Fig. 6.4

6.3.4. Fixed Beams. A beam whese both ands are fixed or built-in walls, is known a3 fived
baam, Souch beam is shown in Fig. 6.4, A Oxed beam i ales known as & bedi-in or eneastred bearm,

LA, Continuons Beam. A beam which is pro-
vided more than two supports as shown in Fig. 6.5, s %

known as continuons berm,

Fig. 8.5
G4. TYPES OF LOAD

A beam 15 normally horizontal and the loads acting on the beams are generally vertical,
The following are the important trpes of load asting on a bepm -

1. Concentrated ar point load,

2, Uniformly distriboted load, and

& Unifermly varying lead.

.4.1. Concentrated or Point Load. A concentrated load is one which is considered to
act at 8 point, although in practice it must really be distributed over o small aren, In Fig. 6.6,
W shows the point Ioad,

I o

"-'\f.'\ﬂ'.'\.r'.'\"i:f.'\./"'\f"\./"'\f"‘/‘.".

[ | [ )

Fig. 6.8 Fig. 6.7

6.4.2. Uniformly Distributed Load. A uniformly distributed load s one which iz spread
over & heam in such & manner that vate of leading o i wniferm along the leagth (fe., each untt
lemgth ig loaded to the same rate) as shown in Fig, 6.7, The rate of loading is expressed as
w Wim run. Uniformly distributed load is, represented by u.d.l,

Fer solving the numerical problems, the total
uniformly distribubed load 1= converted Into a polot load,
acting at the centre of uniformly distributed lond.

4.3, Uniformly YVarying Load. & uniformly vary- +
Iz load bs cne which is spread over & beam in such a man.
ner that rate of loading varies from point to point along the @ ﬁ
beam az shown in Fig. 6.8 in which lead ks zere al one end
and Inereasas unifsrmly to the other end, Suech lond is known Fig. 6.8
a5 trinngular lnad.
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R A

T R TR R

For salving numerical problems the total load is equal to the ares of the triangle and
this total lad is assumed o be acting at the C.G. of the triangle ie., at a distance of Erd of
patal lenpth of beam from left end.

G5 SIGN CONVENTIONS FOR SHEAR FORCE AND BENDING MOMENT

(i} Shaear force. Fig. 6.9 showe & simply supported beam AR, carrying & load of 1004 N
at its middle point. The renctions at the supports will be equal to 500 N. Henee R, = Ry
= GO0 M,

Now imagine the beam to be divided into two portions by the section X-X. The resaltant
of the lond and reaction to the left of X-X is 500 N vertically upwards. (Note in this case, there
is no load to the left of X-X). And the resuliant of tha load and reaction to the right of X-X is
{1000 | = 500 § =500 | W) 500 N downwards. The regultant fores acting on any ane of the parts
nornzal to the axis of the baatn is called the shewr force ul the section X-X, Here the shear force
at the section X-X is 800 K.

The shear force at o section will be sonsidersd positive when the resultant of the forces
to the left to the section is upwards, or to the right of the section is downwards. Bimilarly the
shear force at a section will be congidered negative if the resultant of the forces to the left-of
ihe section L= downwards, or to the right of the section is upwards. Here the resaltant force to
the left of the section ts upwards and henece the shear foree will be positive.

x 1000 W
i i 1 [ i]
Ay i Fa

X lum H Emmh‘r !

. E—;‘-ﬂ ur

=00 M :-_. [ :

K B0 M {n} Poglive BAL (b4 Bt B

Fig. 6.5 Fig. .10

(i} Bending moment. The bending moment. at & section is considered positive if the
bending moment at thet section is such that it tends to bend the beam to a curvature having
eomeavity at the top as shown in Fig. 6.10 (o). Similariy the bending mement (B.M.) at a section
is eongidered negative if the bending moment at that esction is such that il tends to bend the
beam to a curvaturs having convexity at the top as shown in Fig. 6.10 (6. The positive B.M. iz
aften called sagging moment and negative B.AL. as " ]1m H

hogging moment.

A C

Consider the simply supported beam AR, : ; ._E'I
earrying a load of 1000 N at itz middle paint. :

— 2 m ———4 Zm -I

= 50

Repctions J, and Ky are equal and are having e ] i
magnitude 500 N as shown in Fig. 611, Imagine X
the beam to be divided into two portions by the |
section X-X. Let the section X-X is at a distance of Py = S00H A
1 m from A, Fig. .11
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The maments of all the forces (e, load and reaction) to the left of X-X at the section |
EXeR, ® 1 = 500 x 1 = 500 Nm (dockwadseh Alse the moments of afl the faress (Le,, load amd
mm:hunJ to the right of X-X at the section XX is B = 3 (anti-clockwise) - 1000 x 1 {closkwise)
=600 x 3 Mo = 1000 = 1 Nen = 1500 — 1000 = 500 Nm {anti-cloclwise].

Hence the tendency of tha bending moment st X-X is to band the beam so as to produoes
cancavity at the top as shown in Fig. 6,12,

e R G i T ™ i 7 e e T

e
m|mmm |

Arficiockwisa :: Clockwae
Fig. 6,12 Fig. 6.13

The bending moment at a section is the algebraic sum of the moments of forces and
resctions acting on one side of the section. Hence bending moment at the section X-X is 500 Nm.

The bending moment will be vonsidered posithre when the moment of the foroes and
reaction on the left portion is clockwisa, and on the right portion anti-clockwise. In Fig. 6.12,
the banding moment ab the section XX s positive,

Similarly the bending moment will be considersd negative when the moment of the
forees and reactions on the left portion is anti-clockwise, add on the right portion clockwise ps
ahown in Flg. 6.13. In Fig 6,13, the banding moment at the section XX is negative.

f.6. IMPORTANT POINTS FOR DEAWING SHEAR FORCE AND BENDING MOMENT
DIAGRAMS

In Art. 8.2, it is mentipned that the shear force diagram iz ane which shows the varis-
tinn of Lthe shear force along the length of the heam. And a bending moment diagram is one
which show the variation of the bending moment along the length of beam. In these diagrams,
the shear foree or bending moment are represented by ordinates whereas the length of the
heam represonts abecissa.

The following are the important points for drawing shear force and bending moment
dimgrams ;

1. Consider the left or the right portion of the section.

2. Add the forces (including reaction) normal to the beam on one of the portion. [f right
partion af the section is chosen, & forcs on the right poction acting dewnwards s positive while
o foree peting upwnrds is negative.

If the left portion of the section is chosen, a force on the left portion acting upwards =
pezitive while a foree acting downwards is nagative,

3. The poaitive values of shear force and bending moments are plotted above the base
line, and negative values below Lhe base line.

4. The shenr foree dingram will incrense or derrepss swdgenly e, by a yartieal :I:.rﬂ[_g'hl.
timwe at o section where there is 8 vertical polnt load.

B, The shear fores batween any two vertical loads wall be constant and hence the shear
force diagram betwesn two vertical lowds will be horizontal,
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Ly

6, The bending moment at the two supports of a simply supported beam and at the free
end of a cantilever will be zero,

6.7. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A CANTILEVER

A

ATV A o a4
.z‘i;t_v TR R

WITH A POINT LOAD AT THE FREE END

. Fig. 6.14 shows a canfilever AB of length L fixed at A and fres at 5 and carrying a point
o load W at the free end B.
¢ w
: 2 N —
8 @ Al : 8
_‘:5? = 7. ~L '
i

.
I

p
3
4
4
b
4
4
4
B

FIFIIFINI e PP TP IIIIIFIIY
A S.F diagram ‘\

Fig. 6.14
Let F_ = Shear fores at X, and
M, = Bending moment at X.

Take a section X at a distance x from the free end. Consider the right portion of the
section. :

The shear fores at this section is equal to the resultant force acting on the right portion
at the given section. But the resultant force acting on the right portion at the section X is W
and acting in the downward direction. But a force on the right portion acting downwards is
considered positive. Hence shear force at X i2 positive.

F=+W

The shear force will be constant at all sections of the cantilover between A and B as
there is no other load between A and B. The shear force diagram is shown in Pig. 6.14 (b)),

Bending Moment Dicgram
The bending moment at the section X is given by
: M =-Wxx WAL
(Bending moment will be negative as for the right portion of the section, the moment of

W at X iz clockwize. Also the bending of cantilever will take place in such a manner that
convaxity will be at the top of the beam).
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From equation {f), it is clear that B.M. at any section is proportional to the distance of
the section frorn the fres end,

Atx=lie,at B, BM. =0

Abr=Fie,otA, BM =W L

Henee B.M. follows the stexight line law. The BM, diagram is shown in Fag. 6.14 (e} At
point A, tuke AC = W x L in the downward direction. Join peint B to C.

The shear foree and bending moment diagrams for several concentrated loads acting on
a eantilever, will be drawn in the similar manner,

Problem 8.1. A cantilever beam of lengih 2 m carries the point loads as shown in
Fig. 6.15. Draw the shear force and B.M. diagrams for the cantilever beam.

Hol. Glven :

Raefer to Flg. 6.15.

Fig. 6.15

Hhear Force IMagran

The shear force at [ i= + 500 M. Thia shear foree remains constant betwesn I and O
At €, due Lo point Ioad, the shoar force becomes (800 + 500) = 1300 N, Between C and 8, the
ghear fores remaine 1300 M. At B again, the shear force becomes (1300 + 300) = 1600 N. The
shear fores betwean B and A remains constant and egual to 1600 N, Hence the shear force at
different prints will be as given balow
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SF.atD, Fp=+80N
_’ SF. atC, Fo=+800+500=+ 1300 N
3 BF.at B, Fg=+ 800+ 500 + 300 = 1600 N

SF. atA, F,=+1600HN.

The shear foree, diagram is shown in Fig, 6,16 (&) which §s drawn as ;

Dreaw & horizontel ling Al as base line, On the base e mark the [.'u:r!l.t'l.h!lH-Elld ' sabow
the point loads. Take the ordinate R = B00 N in the upward divection. Draw a line EF parailel
tn A, The point F i= vertically above O, Take wertical ling M7 = 500 N. Through o, draw &
horizontal line GH in which peint iz vertically above B. Draw wertical line HY = 300 M.
Frioam I, draw & horizontal line &7, The point F is wvertically above A, This completss the shear
force diagram.

Bending Moment DHogrom
The bending moment at IV is zera ;
(2} The bending moment at any section between C and D at a distanece x and IF is given by,
M_ = - B00 = x which follows a straight line law.
At 0, the value of = = 0.8 m
B.M. at (), M. =~ B0D x 0.8 = - 640 Nm,

{ii} Tha B .M, at any section between B and C at a distance x from [ is given by
(At O, x = 0.8 and at B, x = 0.8 + 0.7 = 1.5 m. Henca here x varies fram 0.8 to 1.5%

M = - 800 x — 500 (x — 0.8) wllf)

Bending moment between B and O also varies by a straight line law.

B.M. st H is obtained by substituting 2 = 1.5 m in equation (),
My =— BOD x 1.5 - 500 (1.5 - 0.8)
=— 1200 — 350 =— 1550 Nm.
(iil) The B.M, at any section between A and B at a distance x from I¥ is given by
(At B, x = 1.5 and nt A, x = 20 m. Henes hore & varies from 1.5 m o 2.0 m)
M_ = = B0 x ~ 500 (x — 0.8) — 200 {x - 1.5 A
Bending moment betwaen A and B varies by a straight line law,
I'LM at A ls obtained by substituting x = 20 m in equation (i},
M, =— 800 = 2 - 500 (2 - 0.B) - 300 {2 - 1.6)
== B = 2 - 500« 1.2 = 300 = U
=— 160 — 800 = 150 = ~ 2850 M.
Henee the bending moments at different points will be as given below ;
My=10
MI:-,_ = — B4l I';I:rl
Mg == 1550 Nm
and M, =- 2350 Nm.
The bending moment diagraen iz shown in Fig. 6.15 ic) which is drawn as.

Diraw a horizental line AD as a base line and mark the points B and C on this line. Take
vertieal lines OO = 640 Nm, BB = 1550 Nm and A’ = 2350 Nm in the downward _drm:tau-n.
Jein points D, €7, B and A' by straight lines, This completes the bending mement diagram,
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§.6. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A CANTILEVER
WITH A UNTFORMLY DISTRIBUTED LOAD

Fig. 6.16 shows a cantilever of langth L fixed st A and carrying a uniformly distributed
load of w per unit length over the entive langth of the cantilever.

w Paar il langin L ' ":"
e s B

A :
]

L '.=

-
-
-
o

L

Fig. 6.16
Take n section X at & distance of 2 fram the [ree and B,
Let F_w= Shear foree at X, and

M, = Bending moment at X.

Here we have congidered the right portion of the section, The shear force st the section
X will be equal to the resnltant foree acting on the right portion of the section. But the result-
ant foree on the right portion = w = Leagth of right portion = w.x.

This resultant force is acting downwards. But the resultant force on the right portion
mcting downwards is considered positive. Hence shear fores at X is positive.

FA =4 WX

The abave equation shows that the shear force follows a straight line Law.

At B, x = 0and hence F_=0

At A, x =L and hence P = w.L

The shear foree disgram is shown in Plg. 6.16 ().

Hending Moment Dicgrom
It is mentioned in Art. §.4.3 that the uniformly distributed load over a section ks con-
verted into point load acting at the C.G, of the section.
The bending moment at the section X is given by
M, = - (Total losd an right portion)
x Digtance of C.0G. of right portion from X

2
el x2) . e S e, X i

2 2 b
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(The bending moment will be negative as for the right portion of the section, the moment
of the lead at x is clockwise. Also the bending of cantilever will take place in such a manner
that convexity will ba at the vop of the cantilewer). :

From eguation (£}, it is clear that B8, st any section is proportional to the square of the
distanes of the section from the free end. This follows a parabelic law.

AtB, x=0hence M =0

Lt
AtA x=sLhence M s-w, b

The hending moment disgram is shown in Fig. 6,18 (c).
Froblem 6.2, A condilever of length 2.0 m carries @ uniformily distribucted load of | BN/m

rua cver @ lergth of 1.5 m froem the free end. Drew the sheor fr.u-.:: end bernding momend diagrams
for the cantilever.

=Hol. ven -
UL, w= 1 EN/m run
Refor to Fig. .17,
,"".i 1 khim Sun
A cwwmﬂ
() i |
A i='| 15m ¥
' Z20m *
E o | 1.8 kK
15 | | = I -
FETTPEFITETFRIITY; B
A €|  8F dagram
A c

] 1878

*

Paratolic
AT Sbnighl line B degram

Fig. 6.17

Shear Force Diagram
Consider any section between © and B a distance of £ from the free end B. The shear
force at the section is given by
F =wx (svesign is dus to downward farce on right portion of the section)
=10=x (r w=1.0kNm run}
At B, x = 0 henes F =0
AMC x=15hence F,o»1l0x1L5=L5kN.
The shear force follows a stvaight Hiae law batwesn C and B, As between 4 and O there
i5 o lowd, the shear force will remain constant. Hence shear force between A and C will be
represented by & hovizongal line.
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The shear force diagram is shown in Fig. .17 (&) in which
Fg=0,F.=16kN and F, = F. = 1.5 kN.

Berding Momens Diagrem )
{{) The bending moment at any seclion between C and B at a distance x from the fires
end B is given by

n =
M =—{u-.:,}.%n—[1.‘—:|--‘— B

(The bending moment will ba pegative as for the right portion of the section the moment
of load at x is cleckwise),

ﬂi
At B, x = 0 hemos ME=_?=-|:|
. 1.5% _
At C, x = L5 henoe H'.,-_uu—T——i-lﬂNm

From equntion (i) it is clear that the bending moment varies necording to parabaolic law
betwean O and B,

(if) The bending moment at any section betwean A and © at a distamce x from the free
end B ig ohtained as - (here x varies from 1.5 m to 2.0 m)

Total lond due ta TF.DIL. = w = 1.6 = 1.5 KN,

Thla]mdiaaﬂlngatndjnu.nwuf%-ﬂ.TEmEmulthEt’reae.ndﬂﬂratadirmnteu-f

ix = 0.76) from any section between A and O,
- Moment of this load at any section betwesn A and © at o distance x from free end
= (Load dwe to UL} x (x - 0.75}
M_=— 1B x {x— 0.75) - Aid)
(— wé sign is due to dockwise moment for right portion)

From eguation (i) it is clear that the bending moment follows straight loe law batween
A and .

AL x = LB mhenoe M.=-15(15-076=- L1256 Nm

At A 2 =20 mhence M, =- 1502075} =— LET5 Nm,

Now the bending moment disgram is drawn as shown in Fig. 6.17 (). In this diagram
lime £ = 1.125 Mm and A4’ = 1.875 Nm. The points # and " are on a parabolic curee whereas
the points A" and O are joined by a straight line.

Problem 8.3, A cantilever of length 2.0 m carries a uniformly distributed load of

£ ENVi length cver the whole length and o poind load of 3 kN af the free end. Draw the S.F. and
B.M. dicgrams for the cantilever,

Sol. Given :
Length, L=20m
LI, w = 2 kM'm length

Pednt load at free end =3 BN
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Refer to Fig. 6.18.

2 KNIm 3N
[ ) |a

Fig. 618

Shear Force Diagram

The shear force at B = 3 kKN

Consider any section at a distance x from the free end B. The shear forcs at the section
is given by,

F_ =30+wx (+ve sign is due to downward force on
right portion of the section)
=80+2x=x (== w=2kNm)

The above equation shows that shear force follows a straight line law.

At B, x = 0 hence Fp=3.0kN

AtA, x=2mhence F,=3+2x2=TkN.

The shear force diagram is shown in Fig. 6.18 (b) in which Fy = BC = 3 kN and F, = AD
= 7 kN. The points C and D arc joined by a straight line.

Bending Moment Diogram
The bending moment at any section at a distance x from the free end B is given by,

o =
M,--(..zﬁwx‘z)

2
=-[3x02; ] ¢+ =2 XN/m)
=— (3% + x%) . Af)

{The bending moment will be negative as for the right portion of the section, the moment
of loads at x is clockwise).

The squation (i) shows that the BM. varies according to the parabalic law. From
equation {i], we have

At B, & =10 hancs HB=—{3H{I+1F]=U

AtA x=2mhence M, =-{3x2+2=-10Nm

Now the bending moment diagram is drawn as shown in Fig. 6.18 (¢). In this diagram,
AA' = 10 kNm and points A" and B are joined by a parabolic carve.

= = 2 mem o a kel
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'-

Problem 8.8. A simply supported beam of length & m, carries point load of 3 &N and § &N

5 ot distonces of 2 m end 4 m from the left end. Drow the shear force and bending momend

£

dingrams for the beam.

Saol. First caleulate the reactions H.i and Ry,
Taking mamaents af the force about A, we get
Rpx6=3x2+6x4=30

il
as RF = E" 1] ]r.-.I!l-[

; R, = Total load on beam = Ry = (3 + 6) -5 = 4 kN

B dimgram Baps ling
Fig. 5.5
Shear Foroe Diogrem

Shear force st A, = e R =+ A e
Shieayr Fforce batwasn A and O is constant aned eqgual te + 4 BN
Shear force &t O, Feo=+4= 30 =+ 1 KN
Shear Foree betvean O amd s constant and egual oo o« 1 kR
Shear force ok ) Fo=%+1L—&=—56 kN
The shear fores between I and B i= constant and eqmal to — & KV,
Shear force at 8, Fg=—5 kM

The shear force diagram is drawn s shown ba Flg 6,26 (&L

Hending AMaormené fhiogram

B b ak A, A, =10

B, =k 7, M =R, 2 =4 =x2 =4+ 8 KNm

B, @t L2, J!I-fu=||?ﬁ:|-|:d.—HHE::I-H-G-—-E:-:E=+1L'|§'I‘{1:D.
BM. at B, My = O

The bending moment diagram is drawn as shown in Fig. 6.26 (ch

fAZ SHEAR FORCE AND BENDING MOMENT DIAGCRAMS FOR A SIMPLY

SUPPORTED BEEAM CARRYING A UTNIFORMLY DISTRIBUCTED LOwi

Fig. 6.27 shows a bearn AR of length L simply supported at the ends A soed B and
carrying s uniformiby distribubed laad of o per anit length over the entire length The reac-
tions at the supports will be egual and their magnitude will be half the toial load on the
entire length.
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B digram Bimesar i
Pig. 6.7
Lat R, = Reaction at A, and
Ry = Reaction at B
e

S R,=Rg=
E -
Consider any section X at a distance x fram the lef@ end A. The shear force at the section

(e, F_) is given by,

F‘_'-+R_ﬁ_—t,l.l_#=4 -ﬂ';L:—w.J: ekl
From equation (i), it is clear that the shear force varies according to straight lirus law,

The values of shear force at differept points are @

w. L _-I.ﬁ'.l:l _ ar, I

AL A, x =0 hence F,==+ = 2 + :
L
AtH x=Lhence Fy=+®l_wrp--2
AL w. I L
ME'I=Ehm Fﬂl+T—m.E = [}

The ehear force diagram ks drawn as shown in Fig, .27 (bk
The bending moment &t the section X at a distance x from left end A s given T,
x

Hﬂ=+Rﬂ_I-w-1.—2

_wl | wat { R, - ”ﬁ—”‘] D)
a x
From squation (i), it is clear that B.M. varies according to parabalic Law
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The values of B M. at different points are :

L 0
AtA, x=Ohence M, =2Z.0-Z— <0
At B x= [ henmee M =%.Lu§..ﬂj=ﬂ
L wli L w (LY wl wil  wl
LI b o ) e S ey
[ I-LI
Thus the B.M._ increases sccording bo parabalie law from zero at A to + ——— at the

middle peint of the beam and from this value the B.M. decreases to zere at & according to the
parabalic Law.

Now the BM. diagram is drawn as shown in Fig, 627 ().

Problem 6.9, Draw the shear force and bending moment diagram for @ simply supported
ben of length & m and carrying o uniformly distributed lood of 10 &N/m for a disfance of § m
from the Iaft end. Also caleulote the moximum B.M. on the section.

Sol. Firat caleulate reactions B, and K.

10 kH'm

o

[=h

B k. diagram Basa ina

Pig. 6.28
Taking moments of the forces about A, we got
RBpw9=10=6Gx 'E: 150

;]
i Rl=1:%D=E|JHN

i, = Total load on beam — By = 10 x & — 20 = 40 kN,
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Shear Force Diagram
Consider any section at a distance © from A between A and C. The shear force al the

section is given by,

Fo=+R,-10x=+40=10x wuelf)
Equation (i} shows that shear fores varias by a straight line law between A and C.
At A, x = 0 hance Fy=+40-0=40kN

At C, x = 6 m henca Fpe+d0-10x 6 =- 20 kN
The shear force at A is + 40 kN and at C is - 20 EN. Also shear force between A and C
saries by a straight line. This means that somewhere between A and C, the shear foree is zerc.
Lat the 8.F. is zero at x metra from A Then substituting the value of 8.F. (ie., F_) equal to zero
in equation (£}, we got
(= iy — 10

;::l-m---lm

N 140
Hence shear force is zero at a distance 4 m from A,

The shear fores is constant between  and 8. This equal to — 20 kN,
Mow the shear force diagram is drawn as shown in Fig. 6.28 (b). In the shear force
dingram, distance AD = 4 m. The point [ is at & distance 4 m from A.

S BM. Diggram
The B.M. at any section between A and C at a distance x from A is given by,
M =R, xx-10.x. E—a!:ﬂ# fie® )
Eguation {/i) a.huw:a that B.M. varies necording to parabolic Law betwesn A and O
At A, x = 0 hence M =d0x(-5x0=0
ALC, x = 6 m henca H¢-m16—51$zﬁﬂ—lﬂﬂ=+mmm
At D, x = 4 m hence Mo=40 x4 -5 42 = 160 - 80 = + 80 kNm

The bending moment between C and B varies according to linear law.
B.M. at B is roro whereas at O is 60 kNm.

The bending moment diagram is drawn as showm in Fig. 6.28 ().

Mesimum Hending Momans

The B.M. is maximum at a point where shear force changes 3ign. This means that the
point where shear force becomes zero from positive value to the negative or vice-versa, the
B.M. at that point will be maximuam. From the shear force diagram, we know that at peint DD,
the shear force is zero after changing its sign. Heru::aﬂl-[ iz maximum at peint D. But the
E M. al I iz + 80 kM.

. Max. BM. = + 80 kN, Ans,

F‘rnl:ll.l!m 8.10. Drow the shear foree and B.M. disgrams for o simply supported beam of
bength B m and corrving o uniformly distribated lood of 10 kN for o disterce of 4 moes shown
in Mg, 628,

Sol. First caleulate the reactions K, and K.

Taking moments of the forces about A, we get

i
=1 4 Le=| =120
RB:H:E- b= :-l.[ 1:-2]
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]

el

R, = Total load on beam — Ry
=10 = 4— 16 =25 &M

Shear Foree [Nogrom

The shaear force at A is + 25 kM. The shear force remains constant between A and C and
equal to + 25 kM. The shear force at B is = 15 kM. The shear fores remains constant between
B and P and equal to - 158 kN, The shear foree at any section between O and ¥ at a distance
£ from A is given by,

F. =+ 25— 10z — 1} i)
At O, x = 1 hanea Fr=426=1Kl=1}=+25kN
ALLD, x = 5 ke Fp=+26- N5 = 1)== 15 kN

The shear foree at © is + 25 kN and at I? is — 16 kN, Also shear force between C and D
varies by a straight line law. This means that somewhere batween C and D, the shear force is
zero, Lat the 5.F. be zero at x metre from A. Then substituting the value of 8.F. (i.e., F ) equal
Lo gero o equation {5, we get

i =25 - 1z - 1}

or 0= 25« 10x + 10 o 1k = 36
a5
E R 10 = &6 m

Henoe the shear force is zero at a distance 3.5 o from AL
Hence the distance AE = 3.6 m in the shear force diagram shown in Fig. 6.2 (b,
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B.M. Diogrom
B, at A is zero
B, at i is nl=o zero
B nt.-ﬂ':Rﬂ:n:l=EI5 w ]l =25 kMNm
The B.M. at any ssction between O and I at a distance x from A ks glven by,

anE_q_:—l{!.::—lil.{_I;H-BE-MI—E[.:—I}“ .}
At 0, x=1 henoe M =20x1-061-1F =25 kNm
At x=5F hence Mﬂ‘EEHE—E{-ﬁ—1F=lﬂﬁ—ED=ﬁmm

At E, x = 3.4 henea MR-EExE.E—E{S.ﬁ—1]==B‘?.E—3]Lﬁ-=5&.ﬂ5mm

B.M. will increase from @ at A to 25 kNm at © by a straight line law. Between C and I
the B.M. varies according to parabolic law as is clear from equation (if). Between C' and 2, the
B will be maximnam at £, Fram 2 o 8 the B, will decrense from 45 kNm al I to zere at B
according to strabght line Law.

Problem §.1L Draw the 8.F. and B.M. diagrams of a simply supported beam of length
7 m corrying wniformily distributed losds os shawwn in Fig, 600,

10 kF'm EE
oy ="= -\..,c‘-\,-'\-v‘il e = 8] ! B

31.25
]

L EM.dagram &
Fig. 6.30

Sol. Firat caleulate the reactions B, and i,
Taking moments of all forces aboul A, we get

a 2 _
H.EI“:T"=1':""‘3"C§*5"‘2'I:3"' 24-1-!:]-45 + 6 = 106

- ﬂa=$=15m
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amd I'E",_-‘I‘l:-l'.uulI-|:|-al-.'i1:r|1.l'.'n:-l.l'I:--RIEl
=il 3 +5x2 - 16=40-15=25kN

&SF. Diggram
The shear foree at A 15 + 35 KN
The shepr force st C =R, — 3 = MNe+26-30=-560kN
The shenr force varies between A and C by a straight line law.
The shaar force between C and I is constant and equal to - B kN
The shear force at 8 is ~ 15 kN
The shear fores between D and B varies by a straight lne law.
The shear force diagram is drawn as shown in Fig. 6.30 (&)

The shear fores is zaro at point E between A and C. Let us find the location of E from A.
Let the polnt E be at & distance x from A,

The shear forco st B = R, = 10 x x = 25 - 10
But shenr foree at B =0

25 e Ik =0 : or Lox =25
26
= — =ﬂ.\_.!,'|
o T 0 m
B.M. Diagram
B.M. at A is zaro

B.M, at B iz zero

BM.atC, Mg =Ryx8-10x3 x 2 =25 x 8- 45 =75~ 45 = 30 kNm
AL E, =25 and henos

B.M. at E, J'H’E-R,_x2.5—1Dr2.ﬁx%uﬁﬁrﬂ.i—5xﬁ_‘£
= 62.5 - 31.25 = 3125 kNm

B.M. at I}, Ht;,:‘.!.'i-l;ﬂ+E}—iﬂxﬂx[%+ﬂ]-]ﬁ—ll]i;mmm

The B.M. betwoen AC and between BD varies nccording to parabolic law, But B.M.
betweon  and [ varies according to straight line law. Now the bending moment diagram ia
drawn as shown In Flg. 6.30 {ch

Problem 6.12, A simply supporied beam of length 10 m, carries the uniformiy distrib-
uted load and #wwo point loads as shown in Fig. 6.31. Draw the S.F. and B.M. diagram for the
beam. Also colenlate the meximum berding moment.

Sol. First calenlate the reactions £, and R
Taking moments of all forces about A, wa get

Ra"1':'-“‘5':'32+1ﬂx4x[2+;.}+drﬂ{ﬂ+-l}

= 1{6} + 160 + 240 = S0
Rﬂ=%=mm
and E, = Total load on beam - K

m {50+ 10 = 4 + 400 - 5= 130 - 50 = 80 kN
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S0 o km A0k
l_.__i_._....,...._,d q

PPE

k—zm —b———— 4 m ———————Hl————— 4 m —W
o = BO

1 imi
RAg =50

b}

Fig. €.91

FF. DhMagraot
The S F, ot A, F, =R, =+ B0 kN
The 5.F. will remain constant hebweauﬁandﬂandaﬂunlm+ﬁﬂm
The 5F. just on B H.S, of © = B, — 50 = B0 — & = 30 kN
The S F. just on LHS. of ) = B, — 80 - 10 w 4 = 80 - 50 - 40 = — 10 kN
The 5. F, between O and ) varies according to straight line law,
The SF. juston RH.S. of I = K, = 50~ 10 x d — 40 = 30 — 50 — 40 — 40 = — 5 kN
The 5 F. at B = — 50 kN
The S F, remains constant betwesn [ and B and equal o — G0 kN
Tha shear force dimgram is drawn as shewn in Fig 631 (&),
The shear fores is zero at point K between 0 and 0.
Let the distancs of & from point A s x.
HNow shear force at E=FH,; — 50— 10 x (x = 2}
= B0 — S0 — Lix = 30 = 60 — Ll
But shiear foree at E=i

fii]
e F— 10z = or -'I:-"Eﬂ-'il:rl- S
HM, DNagroam
B.M. at A i8 zero
E.M. at ¥ is zoro
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B.M. at €, M. =R, »2 =80 x 2 = 160 kNm

4
B at I, My=R, xG=-50xd-10xdx —
= Bl x E—M—M:dﬂ—&lﬁi—ﬁﬂﬂunkﬂm

At E, x = 5 m and hence B.M. at E,
My = Fy x5 6005 — 2)— 10 % (5 - 2} % [_'5.;_3]

=B0xf-50x3=-10%3x§ =400 160 - 45 = 205 kNm

The B.M. Mtlle-eu C and D) varies nccording to parabolie law reaching a maximum value
at E. The B.M. between A and C and also between B and D varies according to linear law, The

B.M. diagram is shown in Fig. 631 ().

Maeximum B.M.
The maximum B.M. iz at E, where 3.F. becomes sere afler changing its sign.

Max BM. =M_ =206 kNm. Ans :

Problem B.15. Drawr the 5.5 ond BM. diograms for the ovechonging beam carmying
pniformiy distributed foad of 2 BENVm over the antire length ood o poind load of & BN as shacre

i Fig. .35 Locafe the point of comtroflexure.
Sol. First calculate the reactions K, and S,

Taking maments of all forces about A, we gt
Hygmd=0x6x3d+r2ZxG=35+ 12~ 48

RE:"_:=.12L=H

R, = Total load — Ry = (2% 6+ 2 — 12 =2 kN

o WAm EHH|

el
=]
|

+
T
=hl 12 -
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5. F. Dingram
BF. atA=+ R, =+ 2 kN
{1 The S.F. at any section betwesn A and B at s distence x from A is given by,
Foe=+R, =-2xx

=2 - 2x wlEh
At A, x =0 hence F,=2-2x0=2kN
At B, x = 4 henos Fh:ﬂ-—ﬂ!-c-'l--—ﬁ-]-:ﬂ'
The 5. F. betwesn A and B varies according to steaight line law, At A, BF, is posilive

and at B, 8F. iz negative. Hence hetween A and B, 5.F. is zern. The point of zero 5.F. is
obtained by subetituting F, = 0 in equation (i

== 0=2 - 2 oT I-%I‘lm

The 3.F. is zere at point I, Henee distancos of IF from A is 1 m.
{ii} The 8.F. at any section betweean B and C at a distance x from A iz given by,
F, == R,-2xd+ Rg— 2lx -4}
= 2B+ 12— Hx -4 m i 2x =) . AEEd
AtB,x =dhence Fy=6-24-4)=+ 6 kN
At O, x =6 henca F;_-_.-E—!E[H—-!J:-E—-ﬂ--—‘.!l-.l‘d’
The 5.F. disgram iz draen as shown in Fig. 6.36 (&)

B.M. Dhagram
: B.M. at A is zere
(i} B.M. at any aection between A and B at a distanoe x from A is given by,

Ml=Hde—Exxx§=ﬂr—:* el EHED

The above equation shows that the B.M. between A and B varies scoording to parabolic

Ax AL x = 0 e M, =0

At B x =dhence M,=2nxd4-4%=-8kNm

Max. B iz at D where 5.F. is zero after changing aigm

AMD x=1hence M,=2x1-1¥=1kNm

The B.M. at 0 is perg. The B B, also varies between & and ' aceording to parabolic lnw.
Mow the B.A. dingram is drawn as shown ln Fig, 5,36 (c)

Poing of Coniraflexure
This point is at £ betwesn A and B, where B.M. is zere aflter changing its sign. Tl
" distance of £ from A &8 obtained by putting M = 0 in equation (il
: s =2 = 2 =28 - x]
2=x=0
and w2, Ans.
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MODULE 6

SPRINGS & COLUMNS

16.14. SPRINGS
Springs arg the elastic bodies which absorh energy doe to resilience. The absarbed en-
ergy may be released as and when required A spring which is capable of absorbing the graat-
28t amaunt of eanergy for the givan stress, without getting permoanently distorted, is known s
the best spring. The bwo important types of springs ave :
L. Lominated or leal springs and
2, Helical springs.
18.14.1. Lamingabed or leafl spring. The laminated springs are used to absorb shocks
in railway wagons, coaches and road wehicles (such as cars, lorries ete. L
Fig. 16.11 ghows a laminated spring which consists of 1 number of parallel strips of a
metal having different lengths and same width, placed
ane ovar the other, Initially all the plates are bent to
the same radius and are free o slide one over the other,
Fig. 18.11 shows the initial position of the spring, -S————
which s having some central deflection 8. The spring !
resls on Lhe axis of the vehiele and ile top plate s
pinned at the ends to the chassis of the vehicle.
When the spring is laded to the degigned koad
W, all the plates becomes flat and the central deflec-
tion (4) disappears.
Let & = Width of each plate
n = Number of plates Fie. 18.11
I = Bpan of spring
o = Maximum bending stress developed in the plates
¢ = Thickness of each plates
W = Paint load acting at the centre of the spring and
& = Original deflection af the top spring.
Expression for maximum bending stress developed in the plate. The losd W
ncting at the centre of the lowermost plate, will be ghaved equally on the two ends of the top
plate as shown in Fig. 1611,

VA2

{
B.M. at the centre = Load at one end = 2

W o Wi ,
ar H=? EE= 3 LA
The moment of inertia of each plate,
ME
I 12
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Eut the relation among bending stress (of, bending mament (M} and moment of inertia
i} is given by

% -z I:HE].'E_‘H - %]
¥
M:
o X ]
o 12 . b
= - fm =5 o
oT o p ® 7 3
z
s ‘Total resisting moment by o plates
2
M= % o

As the mesdmum B.M. due to load is equal to the total resisting moment, tharefore
equating (i) aad (&),

Wl no.ibe®
a6
= 6 .2 - WL I L
4.m. b ¥ ERTe
Equation {16.22) gives the maximum stress developed in the plate of the spring.
Expreasion for central deflection of the Ieaf spring

Haw F = Radias of the plate to which they are

bent.
From triangle ACO of Fig, 16,12, we hawe
AD? = AC? 4+ OO
!. 3
o RE = [E:I + (R =50

2

- + B 5% = 2R
4
2

= . R® - 2RE  (Meglecting 5% which
4 is m small guantity]l

F
2RE =
=
[ SR L}
£« 2T BHH

But the relation hetween bending etress, modulus of elasticity and radius of curvature
(R} is given by

[Ha.rey -

)

E
2
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Buletitating this value of i in equabion (G200, we get
It w20 o
BxExt 4Fr
Equation {L6.23) gives the central deflection of the spring.
Problom 1853, A feaf spring corries a central locd of 3000 N, The leaf spring ie to be
murde of 10 steel plates 5 om wide and & mm thick. If the bending stress is limited to 150 N/mm®
detarmdneg ;
(1) Length of the spring and
(éf) Deffection at the centre of the spring.
Take E =2 = 10° Nimm2

&=

—1E.23)

Sol, Given -

Central load, W = Sk}

Mo, of plates, = 1

Width of each platas, = 5 cm = S ram
Thicknes=, £ = & men
Bending stress, o = L5db MU

Modulus of elasticity, B o= 2w L0 Nimm®
Lel [ = Langth of spring
& = Deflectlon at the centre of spring.
Lisimg capantion (16 =2,
> = =1 0
Enﬁ!_"E :
3 = 000 =
. 1B = e 10 % 50 = 67
! m 150 = 2 = 10 = 50 = &7
3 = 3000
Uaing sgquation {16.23) for deflection,
ol 160 = GO0
AE!  4x2w D B
Problem 168.94. A laminated spring ! m long is mode ap of pletes each § om wide end

I eme thick. IF the bending stress in the plote iz mited to 100 N mm?, how many plotes would
be required fo erabla fve apring to carmy a central poind beao of 8 &N FIFE = 2.7 = 1% N mm®,

= M mm. A

&=

= 1L28 mm. Ans

what is the deflection ander the load 7 (ABIE, Summer 1932)
Sol. Fvan ;
Length of spring, f =1 m= 100 oo
Width of each plata, b ow &5 cm = S50 mm
Thickness of each plate, ¢ = 1 em = 1 mm
Bending stress, o = 100 Nimm®
Central lead on spring, W =2 kN = S N
Woung's eodulos, E = 2.1 = 10° Mimm?®

Lot » = Mumber af plates and
& = Dellection undar the load.
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Dzing the eguation (16.22),

ST 3w 2000 = LODE
I:I':—E'M T Lm=__2:l-:.l1-=|:'l'|]|5'l-l-n=

3w DD = LOGD

=~ = 1, Ans,
M= X2 B0x100

ar

Deflection under load
Using equation {1623},
oxi®  100x 1000°
TUExl 4w21x10° x 10

= 115 mnmm. Ams.

16.14.2. Helical Springs. Helical springs are the thick spring wires coiled into a helix.
They ave of twoe types

1. Cloge-coiled helical aprings and

2 Open coiled helical springs.

Close-coiled helical springs. Close-callsd helical springs
are the springs in which helix anghe is very small or in other words
the pitch between two pdjacent turns is emall. A chose-coiled helleal
gpring carrving an axial lead is shown in Fig. 16.13. As the helix
angle in case of elose-coiled halical springs are small, hence the —
bending effect on the spring is ignored and we assame that the
oalls of B close-coiled helical springs ave te stand purely torsional
streasns,

Expression for max. shear stress indoced in wire,
Fig. 16.13 shows a elese-eoiled helical spring subjected to an axial
bamd,

EE

iy
»ﬁm

Let o = Diameter af spring wire Flg- 1613

p = Piteh of the halical spring

r = Mumber of coils

ft = Mean radius of spring cndl

W = Axial losd an spring

0 = Modulus of rigadity

1 = Max, shear stress Induced in the wire

A = Angle of twist in spring wire, and

& = Deflection of spring dwe Lo axlal load

i = Langth, of wira.
Bow twisting mament on the wire, _

Tr=-W=xkR A

Bal twisting moment is alsoe ghwen by

_E i)
16 o
Equating eguations (i} and {ii), we get
= LEW = it
. o e = 1624}
W=E= T w oar 1 L

Equation (16,24} gives the max. shear siress induced in the wire,
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Expression for deflection of spring
Mow length of one eoil = =0 or 2zl
s Total length of the wire = Length of one coil x No. of eoiles or  { = 2aR = s,
As tha every section of the wire ie subjected to torsion, hence the straln energy stored by
the spring due to torsion is given by equatbon (16.20),
Straln energy stored by the spring,

e T vl = Vot
= E . Lme = E . WORTTE
18W. B Y 1 % a
I[‘_‘da ] KEN[Id :ﬂﬂ:ﬂ,ﬂj
{ x- l_f..d';.?;m Volume « %d? « Total length of l.'rir:]

- %:f* Rn= Eﬁa g {1625}
Work done on the spring = Average load = Deflection
s L Wxb i~ Deflestion = &}
Equating the work done on spring to the energy stored, we get
AZWIR®

} Wa="rg

)]

Expression for stiffeess of spring
Tha: stiffness of spring,
& = Logd per unit deflection
W I
64.WR'.n 64.R.n
el
Mot The solid lemgth of the spring means the distapce betwesn the oils when the coifs are
touching each other. There 13 no gap between the coile. The solid length is given by
Holid lengpth = Mumber of ooils = Dis, of wire = o« d LA1E.28)
Problem 18.35. A closely coiled helical spring is fo carry a load n.l"El:rﬂ' M. Tes s
coil dinmeter is fo be 10 times that of the wire diameter. Coleulale these dicmeters if the
meximim shear stress in the moterial of the spring {s fo be 80 N/ mm®.
(AMIE, Sumpeer 1985)

A 1EETY

=¥
T B

Bod. Given ;
Load on spring, W=0600N
Max. shenar stress, ¢ = @ Mimm®
Last o = DNamater of wite
I = Mean diameter of coil
e 10
16WR

Uzing eaquntiaon {1624, =xT= - :ld':
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b¢IL‘::I

1ss-eum,e[

)

ar

_mﬂ[T“]
Bl e md® = B = S
S = 5

- dtE—- .
0T a0 = = 16825

d= 159,156 = 12.6 mm = 1.26 co. Ans.
=0 ed e 10x 1,26 = 126 arm. A4,

HLL

2

P'rn'h-ln:r.n LB88. fr problem 1688, if the stiffness of the spring v 20 & per mm deflection
cored mndufies of rgidity = 8.6 = 00 N mmE, find the neonber of ooils in $he closely codlad helicel

EErg.

Sol. Given : '
Btilfness, 5 = 20 Mfmm
Bodialiag of rigidity, £ = 8.4 « 107 Mimm®
From problem 16.35,

W=50d KM, t=80Nmm?

d =128 mm and I¥ » 123 mm
e R =02 = 12672 = 63 mm
Lat r = Mumber of coilz in the spring

We know, stiffness = -['fiﬂd

00

ar 2= y

]
LA 6= T 25 mm
Using equation {1826,

& BSWRY  n
o.dt

64 = 500 x (63 = n

25 = -
. B4 = 10° « 126° & = &3 mm)
P A 2]
& R= 25mBAx 107 =126 = 6.6 say T4}
64 = GO0 « (63
or H="T. Ans
128
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9.1, INTRODUCTION

Column or strut is defined as 8 member of a structure, which is subjectsd to axial
compressive load, I the member of the structure is vertleal and both of it ends are fixed
- igidly while subjectad to axial compressive load, the member is known as column, for example
& vertical pillar between the reol and (oor. If the member of the strueture s not vertical and

2 ar bath of its ends are hinged or pin joined, the bar is known as struf, Examples of struts
nra ; connecting rods, piston reds eic.

0.2 FAILURE OF A COLUMN

The failure of & column takes place due to the anvone af the following stressss set 1.1|:|-1n
wie columng
(i} Direct compressive stresses,
(ii] Buckling stresses, and
(eif) Combined of direct compressive and buckling stresses.

19.2.1. Failure of a Short Column. A shorl calumn of uniform cross-sectional area A,
subjected to an axial compresasive load P, is shown in Fig. 19.1. The compressive streas indueed

s given by B
P i—
=

A
If the compressive load on the shart column is gradoally increased, a
~tage will rench when the column will be on the point of failore by crushing.
b stress induced in the column corresponding Lo this load is known as crush-
ing stress and the load is called crushing load,

Let P, = Crushing load,
o, = Crushing stress, and /
A = Aras of cross-section. —i-
Then = % . F
Fig. 18.1

All short columing fail due Lo crushing.

18.2.2. Failure of a Long Column., A long eolums of uniform eross-sectaonal area A and
ﬂflﬂﬂﬂ‘thl subjected ta an saial compressive load P, is shown in Fig, 18,2, A column is known as
*eng colummn if the langth af the eolumn in comparison to its lateral dimensions, is very large,
wich columns do not fail by crushing alone, but also by bending {also known buckling? as shown
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in Fig. 19.2. The load at which the colwmn just buckles, is known as beckling
fopd or critical just or erippling load, The buckling [oad is less than the cruah-
ing load for a long column, Actually the valse of buckling load for long columne
i low whereas for short columns the value of buckling load is relatively high.

where £ = Seetion moduhas abant the axis of bending.

Hefer to Fig. 15,2,
Lat I = Length of a long column

P = Load (compressive) at which the column has just backled

A = Cross-sectional area of the column

¢ = Maximum bending af the column st the cendree

g = Stress dus to divect lopd = E

Pz
Z

0, = Btress dus to bending at the eantre of the column =

The extrome stresses on the mid-section are given by
Maximum streas = 0 +

and Minimuwmn streas = O, — o,

The column will fail when maximum stress (e, 9, + o) ls more than the crushing

atreas o, Butin cnse of lang eolummns, the direct compregaive stresses are negligible as compared
to I:m:kﬁug giresaes, Henen very long colummns are subjected to buckling stresses anly.

18.3. ASSUMPTIONS MADE IN THE EULER'S COLUMN THEORY

o,

The follewing nssumpliona are made in the Bulers column theory

1. The eolumn is initially perfectly straight and the load is applied axially.

2 The cross-section of the calumn is oniform throwpheut its length,

3. The column materinl is perfictly elastic, homogeneous and isotropic and abeys Hooke's

4. The length of the column is very lange aa compared to its lzteral dimemnsions,
5. The direct stress i=s very small ns compared to the bending stress.

&, The eolumn will fail by beckling alone.

7. The self-weight of column is negligible.

19,4, END CONDITIONS FOR LOMNG COLUMNS

In cose of long columns, the stress due to direct lond is very amall in comparison with

the stress due to buckling. Hence the failure of long eolumns take place entively due to buck-
ling (o bending). The following four typas of end conditions of the columns are important :

1. Hath the ends of the column are hinged (or pinned),
2 {ne =nd iz fixed and the other end is free.
3. Both the ends of the column are fixed,

4. O end is fixed and the other iz pinned,
Faor a hinged end, the deflection iz zeve. For a fixed end the deflection and slope are Tera.

For a free onid the deflection is nof sere.
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14.4. 1. Sign Conventions. The following sign con-
ventions for the bending of the columns will be used :

1. A moment which will bend the colomn with its
convexity towards its initinl central line as shown in
Fig. 19.3 (@) is taken a8 positive. In Fig. 18.3 (), AR
reprezents the initial centre line of a enlumn, Whether the
column bends taking the shape AB or AP* the moment
producing this type of curvature s positive.

2. A moment which will tend &0 bend the column
with its eoncairily towards its initial centre lne as shown

in Fig. 19.3 (b) iz taken as negative. A

{a} Posive

Fig. 19.3

A
I} Pl=gative

12.5. EXPRESSION FOR CRIPPLING LOAD WHEN BOTH THE ENDS OF THE

COLUMN ARE HINGED

The load at which the column just buckles (or bends) is ealled crippling
lnad. Conalder a column AR oflength f and uniform croas-sectional area, hinged
at both of its ends A and B. Let P be the crippling load at which the column
hag just buckled. Due bo the crippling boad, the column will deflect into a cerved
form ACE as shown in Fig, 19.4,

Congider any section st a distance x fram the end 4.

Let ¥ = Dedlection (lateral displacement) at the section.

The moment dug to the erippling load at the ssction = - Py

[— e sign s taken due to sign comvention
given an Art, 19.4.1)

But moment
Equating the twa momants, we have
df 2
B fe-P.y o ESJ4P.y=0

P
or

The solwtion® of tha abeve differential aquation is

<6 (e {2 s m )

v}

where ) and Cy are the constants of integration. The values of C, and O, are obtained as

si'ﬂ:nhaim-.-:

Department of Mechatronics Engineering, NCERC, Pampady.

131




MR 306 : MECHANICS OF SOLIDS

(ih At A, x =0 and ¥ =0 (See Fig. L9.4)
Substituting these values in eguation (i), we ged
i = C'L-ﬂ':ﬂl:lv-b'ﬂ'gﬁﬂ o

=I'_'..',|:-e]-|-ﬂ'ﬂ:l:fl f'.'l!f:a!-D:l:nduin-I]-ﬂ;l
=|:.'|_
- e, = 0. i)

{i3h At B, x = | and v = 0 (See Fig. 18.4).
Substituting these values in equation (2}, we get

fE ) cun [ {E
=0, .eog x‘lﬂ &, . min B

2
=I:I+C'2_ain[":“ E] [+ £ = 0 Prom egquation (§)]
= g min [1 'ﬂ% - LEEED
From eguaiion (i, it i= elear that either O, = &
. P
e . B
ar =i I:I VEr

fs O = 0, then if C, is also egual Lo 2ero, then from aguoation (0} we will get ¥ = 0. This
means that the bending of the colamn will be zera or the column will ot bend st all. Which is

ot trac,
IR
g | T I— =
[\EI
= gin 0 or sin x or sin 2= or sin 3mar ...
ar ﬂHI%—Dnrnnr.Enm-.':htm-...

Taking the least precticnl value,

LA159.1)

194, EFFECTIVE LENGTH (OR EQUIVALENT LENGTH) OF A COLUMN

 The effective length of a given eolumn with given end conditions is the langth of an
eiuivalent column of the same material and cross-section with hinged ands, and having the

value of the crippling load equal to that of the given column. Effective length is also callad
equivalent longih.

Let L = Effective length of & column,
{ = Actunl length of the column, and
P = Crippling load for the calumn,
Then the crippling load for any type of end condition is given by
n EJ
T A18.5)
L]

The crippling load (P} in terms of netual length and effective length and also the pelati
between effective longth and retoal length are given in Table 19.1. o

P
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2 Ma. End sordiliorss Crippling lomd in termes of Relation befusen
af caluwnn - — o effective Maregrth
Actual feagil I Effeetice length et getwal fvapth
x=EF gy
i. Bath epda Wingped TT #? L =1
o ] 2Er TRy
2} O end ks fixed %*— 'E— L, o=
and other is fr-m
At B n2Er |
3. | Bath onds fixed — Y L.=3
axtEr ntEf I
4. | Omoe end fixed and II,E L® Ly = T

e

ather i= hinged

There are two values of moment of inectia Le., ¥ wmad IH.

Tleo vakuo of Fimoment of inertda) in the ahove sxpressions shaoauld be taken as tha leaat
valie of the two moosents of inertia as the column will tend to bend in the direction of least
moment of inartas,

18.8.2 Slenderness Hatio. The ratio of the actual lengith of a column to the least
radins of pyration of the column, = knewn as slenderness rakioo

Elfrthematically, slenderness ratéo s given by

Aoctual lenpth _ £
Leant r.n.rl'i“nnl'g_'p'r.ntinrq Tk

19,10, LIMITATION OF EULERS FORMITLA
From equation 19.46), we have

Slemvdernezs vatio = el LB

Crippling stress =

]
For & column with both ends hinged, L =I. Henoe Crippling stress becomes as = CLa ) .

z
where . is slemderness ratia.

. . I , g
IT the slendarness ratic | fe E] i= s=mall, the crippling stress (or the strass at faklare]

willl be high. But for the column materisl, the crippling stress cannot be greater tham the
crushing stress, Hones when the slenderness catio is less than a certain limit, Ewlers foremala
gives a valwe of erippling steess greater than the crushing stres=. In the limiting case, we can
firnd the value of {7k for which crippling etress iz equal te crushing stress.

For exampla, for a mid stesl colimn with both ends hinged,
Crushing stress = 330 MNoman®
Young's modulus, E = 2.1 = 10F Mimm=.

Equating the crippling strass o the crushing stress comresponding ©o the miniemurs valuwe
af slenderness ralia, we goi

Crippling strecs = Crushing stress

-] =
p— T a0 g T eElxl0% o

¥
yE 2
(%) (z)
) 2N w21 105
= {-‘::I = —————— = QEET
I R
= GEEZ = TH.27, say 84

Henes, if thie slenderness ratio ig bess than 80 for mild steel column with both ends
hinged, than Eulars formuln will ot be valid.

Froblem 19%.1. A sodecd rownd ber 3 m fong and F oo §n dicemater is esed ot o sfraf soith
ok ends hinger. Defermine the crippiing for collapeing) faod, Tobe B = 2.0 = 0% N/ mmE.
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Saol. Glven :

Length of bar, { = 3§ i = B0 mm

Diametar of bar, of = & om = 5 e

Young's modulhus, E = 2.0 = 10° N'mim®*

Moment of inertia, 1:3_’;351-30_53:1-“ = 30.68 = 10* mm?
Let P = Crippling losd.

As bath the ends of the har are hinged, hence the crippling load 18 given by eguation
{161
2Bl =F w2 105 = DGR x 10
b= - a000*
= §T2ERA M = B7.288 KN, Ans
Problem 18.2. For the problem 19.] defermine the crippling load, when the given strod
ie ueed with the following conditions :
(i} Ore end of the strut is fived and the other end is free
(i) Both the ends of strut are fived
(i) One end ix fixed and cther is hinged.
Sol. Given :

The dats fimm Problem 19,1, is ! = 3000 mm, dismeter = 50 mm, £ = 2.0 = 10° Nmm?*
and ! = 30068 = 10¢ mml.

Let P = Crippling load.

(i} Crippling load wher one end i fooed and otfer is free

afEl nf w2 = 10° = 3068 « 10°
T 4 = 30007

Uszsing equation (18.2), FP= = 1G22 M. Ans.

Alternate Method
The erippling load for any type of end condition is given by equation (12.5) as,
b1 | 0
P'— I_l
Ly
where L, = Effective length.
The elfective length (L) when one end is ficed and ather end is froe from Table 18.1 on
page 819 is given as
L =2 = 2w $000 = G T
Substituting the value of L in equation {1), wa gat
x® » 2w 107 < 3068 x 10*
i BODD*
(i) Crigpling load when bath the ends are fixed

AxEl 4" « 2= 10° = 5068« 10*
Using equation {19.3), P= —y— <oo0?

_ = 269152 N = 269,152 kM. Ans

F= = 16H22E M. Ams.
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Alternate Method
Kl
Using aquation (18.5), P = "f&—

where L, = Effoctive length

i
=g (when both the ends are fixed)
3000
- [ = S0
= 150 mm

2 i
. n uE.nxj::I;;zm,{;ﬂxm - 259152 N. Ans.
(iii} Crippling load when one end is foed and the other ie hinged

i x ] !: = =
r:EEJ' _ Zen® x20x 10° MEE?LE“E:IMETHN. Ans

P=

UHII'LE -EqIJ!t-iW'I I:ll94]| F L m.ﬁ
Alternate Method

2
Using equoation (19.5), P = “.FE

”
where L = Effective langth.

I

= E (when one end i= fixed and the other is hinged)
Jee)
& i
¥ . 5 d
po T 22010 «F6E < AT 104576 M. Ans.

)
+2

Problem 19.8. A columen of timber section 15 em » 20 em is 6 metre long both ends being
Figed, IF the Youngs modulus for Hmber = 175 kN mm®, determine

(L) Crippling load and
(i) Safe load for dhe colume i facior of sefety = 3.

Sol. Given :

Dimenslon of section = 16 cm = 20 e
Actual length, I =6 m=6HI mm
Young's modulus, E =17.5 kMN'mm®

(i] Let P o= Crippling load
Uzing equation {19.5), we gat

n Bl
P= 7 LE
where L = Effective length
!
=9 (whem both the ends are fixed)
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L
=—2 = 3000 rm Lo = G mamn]

{ = Lanst value of momant of inertia
tdomnent of inertia of the section about X-X axis,

15 = 0% i
P = ————— = 10000 e [..7
L 12 CE
= 14300 = 10" mm®* +*
And morvent of inertia of the section about
T¥ axis,

|

z
]
3

S
Fypm 520 - BB2E e

= SH25 » 1004 mmt.
Sinoe Iy is less than [, therafore the column =5 em j
will tend to bockle in ¥~V directiom.
S the value of £ will ba the least valee of the :
tvear ervorment al inerkia !
* .
|

- —— ]

S
|
1
|
i
l
i
i
T
i
|
I

{ = BEZS em? = GE2E » 10F mon?
%Httuhnﬂ the: values of = BG25 = 10% mymd
and L = 3000 rumn. in eguatioon (£, we geL

F_nixl?ﬁaﬁﬂﬁxlﬂ":l KN A,
i} Safe lond for the column
Factor of safaky = 3.0 {given]
Crippling load L7848

-. Snfe load = Fadl r of safoty = 5 = G548 say 360 kM. Ans.

Problem 184, A hollow mila steel tube & m long 4 emt Infernal dicmeter andg 6§ mos thick
iz peed o o strut wibh both ends kinged. Find the crippling load and sefe load toking fector of
safely ap 3, Toke E = 2 = J(F N nm®,

Sol, Given : )

Length of twhs, { =86 m = BN cm

Internal dia_, o =d em

Thickruess, fe= B mm=0.5cm

- External dia., Ded+2=4d+2x08=d+1=5cm
Young's maodalus, E = 2 » 10° Nfmm?

Factor of aafety =3.0

Moment. of insrtia of section, § = ﬁ: L = %) - ;_4; 154 — 447 cm?

= EEE (625 = 256} = 18,11 em* = 1811 = 107 mm?
Sinece both ends of the strut are hinged,
Effective length, L, =« 00 con = S000 mm
Let P w Crippling load

Using equation {1855, wa get
P= "::E’T
= n? % 20 x ﬂ;ﬂml] <107 _ 99299 say 9950 N.  Ans.
And zafe load = F?Elﬂlg::':;r = Eaﬁllﬁnl:l = 3310 M. Ans
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Problem 150 A solid rownd bar F m long end 5 cm in diometer was fornd o extend
4.8 mm pader o tensile locd of 50 &N This bar is psed as o stret wizh both ends hinged. Determaine
the buckiing lood for the bar and aleo the safe load faking fector of safely as 4.0

Bal. Given -

Actual length of bar, 5= 4 m = 4000 mm

IHa. of bar, = 5 cm

T
soAren of bar, A= 3" 5 = 6.20m cm® = 6,250 x 10% mm® = 625 mm?®

Extension of har, &L = 4.6 mm
Tenzile knad, W= 50 ki = 50000 M.
L this problem, the velues of Young's modulus (E) is nob given. Buk it can be ealenlated
firomn the given data.
I:T-Bnaﬂe I.c-&:l]
Tens=ile etress Area
R vl o — =
oung's e - Teansilfe strain Extanszion of bar
Length of bar
r'd

L‘: Eue-ae:-——d and strain = E]
Brem i

r

W
_Tq.__]_i A G0000 400

="8L A BL GZ5m 486

= 2214 = 104 MNimam?®,

iL

Sinene e strut is hinged at its both snds,
o Effective length, L= Actual length = 400 mo
Lt 7 = Crippling or buckling load.
TUsing equation {18.5), we get

8

Ef
==
L2

1223214x10‘x%_xﬁ*u1{3‘
- 4000 = 4000
ALAD G0 say 4190 BN, Ans,

Crippling load _ 4190
And safe load  w oo B = - 10475 N, Ans.

[‘.' f = 5% % 109 mm"]l
L |

19,11, RANKINE'S FOEMULA

In Art. 19,10, we have learnt that Euler’s formula gives correct results cnly for very long
calumns, But whal happens when the column is a short or the eolumn is not a very long. On
the basis of results of expariments performed by Rankine, he established an empirical formula
which is applicable to all columns whether thay are short or long. The empirical formula given
by Rankine ks known as Rankines formula, which is given as

Department of Mechatronics Engineering, NCERC, Pampady. 137




MR 306 : MECHANICS OF SOLIDS

1 11
F A
_where P = Crippling load by Rankine's formula

FPo.=Crushingload =o_= A

a, = Ultimate crushing stress

A = Area of croes-section

Pg = Crippling lead by Euler's formula

3

A which I, = Effective length

L

For & given column material the crushing stress o, is & constant. Hence the crushing
load o {which is equal to o, x A} will alse be constant for a given cross-sectional area of the
coluenn, In equation (i), . is constant and hence value of P depends upon the valoe of g But
for a given oolumn material and given cross-sectional area, the value of Py depends upon the
effective length of the column,

) {41 IF the eolumn is o short, which means the value of L, is small, then the value of

1

-Aah

P will be large. Henes the valus of —— will be small enough and is negligible as compared to

Pg
| 1 ) .
thcwlueufp—.ﬁeg]lai:ﬂn;th-ﬂvalut ﬂfF_E in equation (i), we get
|
1 1
F—"Pﬂ or F .P-I.T'

Hence the erippling load by Rankine's formula for a short column is approximately equal
to crushing load. In Art. 19.2.1 also we have seen that short columns fiail due to crushing,

(if) If the column is long, which means the value of L, is large. Then the value of Fg will

1 1 1
ha small and the value nl"F— will be large enough compared with E . Hemee the H]l.lt--ﬂFE
E
may be aeglected in equation (4,
1 1
i Py or P==Pg
Hence the erippling load by Rankine's formula for lang columns s approximately equal
ta erippling lead given by Euler's formula.
- Henee the Bankine's formula % = .Fi " Fi gives satisfactory results for all lengths of
E
columnz, ranging from shart to long :bluln;:l:a.
. o1 i 1 Pg + P
MNow the Rankine's formula is < = 5= + == =—F/——F
| A

Py Py .Pg
Taking reciprocal to both sides, we have
pote e P
FE-I'PE 1*&
Fe.

P— - . o ] f 1 os
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=}

a
=+ﬂ’““; [ B —q,.Aand Py =X EI]
14 e
=* EI

i
Hut I = Ak2 where & = least radius of gyration
- The ahove eguation becomes as

3 a,. . A _ Ty - A
i l+qi"'.ﬁ+£"': | %’-’—.[5—]2
= E. Ak nE &
__ o A = LALRE)
1"'“-'[%}
whers o = I'I'_I:‘E and is known as Rankine's constant,

The equation {19.8) gives crippling load by Rankine's formuln. As ﬂ'l-e_ﬁ.tn}:im formula
is empirical formula, the valwe of “a” is taken from the reaults of the experiments and is not
caloubited from the valoes of o and E.

The values of a_ and & for different columns material are given below in Table 192,

TABLE 18.2
E_;.'b_ Moterind o in N{mam® ) 0
[ s :
1. Wrought Irom pll] ﬁ -
=
o Cant. Tran 450 1600
J 1
a Mild Bisal 20 TE00
' Y
4. Tinthiee | =D

!"mh-l.;:tu 19.13. The external and internal dicgmeter of o hoellow cast iron ooliren are
5 em and 4 om respectively, If the length of this columsa is 3 m nnd both of ita ends are [Teed,
determine the erippling lond wsing Ronkine's formula, Take the velues aof a, = 550 Nimm?* and

r .

Q= m in Ronkine's ,I'Elfml-dﬂ
Saol. Given ;
External dia.. [} = & cm
Intermal dig,, o =4 cm

Area, A:E (6% 4%) = 2 9%x et = 2251 # 10° mm? = 225x mm®

Moment of Inertia, [ = 1_,‘ [54 - 4%] = 57656 m cm?

G
= 5.7656x » 104 mm* = §5766Gr mm*
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- Least radius of gyration,
|'T [ET6hGx
& =va -.. . = E5.625 mm
Length of coluesn, [ = 3 m = 3000 o
Ax both the snds are fixed,
- Effective length, Lr = '_'E - 3ﬂ2|:||]
Crushing stress, o_ = 650 N/mm?

= 1500 mm

_— 1
Hankine's constant, a = T

Let P = Crippling load by Rankine's Forrmula
Using equation (1881, we hove
gy A G50« BRAm

LY 1 1500
“[T] 1+lﬁm"[2a'.]

650 = 25
=W=1EHMN. Ans,

Problem 1904, A bellow cylindrical cast iror columa s 4 m lang with both ends ficed,
Determine the minimum digmefer of the column iF it kes fo corry o 2o Toed of 260 BNV with «
Facrar of axfely of &, Take the (nternal dicmeler as 08 Hmes the exfernal dicmeter. Tobe

Pu

I
o, = 550 Nimm® and ¢ = 1600 in Rankine's formals, (AMIE, Winter 1983)
Sol. (Given :
Length of colummn, § = 4 m = 4003 mm
End conditions = Bath ende fixed
Effective length, L = % - _l_l]él]__[ = B0 mim
Salie load, = 250 k4
Factor of safety, =5
Let External dia., =0
Internal dia. =083 =
Crushing stress, o = 550 MN/imm®
1
Valus of ‘' = 1600 in Hankine's farmula
Mow factor of safaty = -qrw%ﬁﬁud or f= -ﬂm—ppﬂlﬁf koad

Crippling lead,  Pe b« 200 = 1250 kN = 125000 N
Ares of column, A= E [ — {0, 800E

I

-3 Ln!-u.-swﬁki; % 096D = x « 0080

Moment of Inertia, [ = ﬁ—’; [ — (0.8DF] = é LD — 0.400960M)
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- ;_'-u. % 0.5904 x [* = 0.009235 x x x [

But I = A = &%, whers & i radius of gyration

_ (T [0.009226 < <D
L k= == = 32D
Va Tt w 0L e F
Now using equation (19.9), P = 2o A
1+n{£j|
&
560 ag o
ar FE50000 = ;”“ﬁ;ﬁ - (v A===000D%
Y il
* 1g00 " [u.azn]
1 25004K) nt ot x D"
BE0xnx008 T 24EE O BO3E = BT qa1d
DE

er BOZELF 4 A038 = 24414 = [ or DY — BOZEDE — BIGE x 24414 = (
“or M = BOCR DF 195230700 = O,
The above cquations ks a guadeatic equation in 0%, Tha solutian is
i o B088 = /80357 + 4= L x 196238700
2

-

[an

- b2 6% - dae
da

_ 8036 « /E46004 + THADGAE00  BO3ZE = 20147
BOZE + 20147

- 2

185925 mm?

FE .,I'1355|3_5 = 1363 mm

oo External diametar = 136.3 mm. Ans.
Interpnal diamaler =08 = 1363 = 1089 mm. Amns

(The ather root is not possibla)
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MOHR’S CIRCLE IN 2D

Introduction

* The transformation equations for plane stress can
be represented 1n graphical form by a plot known
M

—

re
as N nh[ s Circle.

» This graphical representation 1s extremely useful
because 1t enables you to visualize the
1‘@1&1101]5111;),\ between the normal and shear
stresses acting on various inclined planes at a

point in a stressed body.

» Using Mohr’s Circle you can also calculate principal
stresses. maximum shear stresses and strgges on

inclined planes. A nt !_
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Stress Transformation Equations

Yy
“G? y'l
T
—_— Oy e Tty X,
T
F }r’ el 611
X
o, L4 G, 0 X
(9]
TW x1 rjd,ﬂ
1.‘3,._, - Tﬂﬂ
L Gk“l

Ox+0, 0,-0,

cos26 + Txy sin 268

o,
Tylyl = — 27 sin26 + Tyy COs26

If we vary 0 from 0° to 360°, we will get all possible values of ¢, and t

for a given stress state. It would be useful to represent ,, and t
functions of 0 in graphical form.

X1y

X1y

, as
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To do this, we must re-write the transformation equations.

o,+0, Oy—0,
o — ——+ = 2 Y cos20 + 1

5 5 Xy sin 26

Oy — 0,
Txlyl = —Q sin26 + 7y, cos20

Eliminate 0 by squaring both sides of each equation and adding
the two equations together.

2 2
Oyl — —2 + rxlyl = —2 + T_X}‘

Define o,,,and R

2
Oy+0, Oy —0y
o =—x Y R= [M] +Txy2

avg >
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Substitue for c,,, and R to get
2 2 2
(D-xl - Javg) T Txyl = R
which is the equation for a circle with centre (c,,,,0) and radius R.

This circle is usually referred to as
Mohr’s circle, after the German civil
engineer Otto Mohr (1835-1918). He

developed the graphical technique for
drawing the circle in 1882.

The construction of Mohr’s circle is
one of the few graphical techniques
still used in engineering. It provides
a simple and clear picture of an
otherwise complicated analysis.

HOW TO DRAW - MOHR'’S CIRCLE ???

SIGN CONVENTION
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TVPES OF STRESSES

* lomsLle 0x,0;

* Comprassu@ =050,

* Shean Tuy * CW
—-Zx7 . CCw

Construction of Mohr’s circle
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Assuming we know the stress components g, 0y, and 7, ata

point P in the object under study, as shown in Figure 4, the
following are the steps to construct the Mohr circle for the state of
stresses at P:

1.

Draw the Cartesian coordinate system (a'n, Tu) With a
horizontal o, -axis and a vertical 1, -axis.

. Plot two points A(o,, 74, ) and B(o, —Tzy) in the

(o'n, Tn ) Space corresponding to the known stress
components on both perpendicular planes A and B,
respectively (Figure 4 and 6), following the chosen sign
convention.

. Draw the diameter of the circle by joining points A and B

with a straight line AB.

. Draw the Mohr Circle. The centre O of the circle is the

midpoint of the diameter line E which corresponds to the
intersection of this line with the o, axis.
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E(2.0)

Figure 4. Stress components at &
a plane passing through a pointin a
continuum under plane stress
conditions.

{gﬂ.\'g’ L] Tr: (5 }

Aoy, Tay)

JZ —_— gn'vu - H

(J'rw,u; + Tmin }
Tavg i

Ir:'-| — rT.-.ﬂ.'g + l‘?

Tn =

Oy =

R =

Tavg =

1
_E(J-r — o) sin 20 + 7, cos 20

1
(ox +0y) + E(ﬂr,,. — ay) cos 28 + 7., sin 26

b | =

-=:_|__‘_h

1 2
[0 +72,

275y

(a1 + o2) tan 20, =

bt | =

Oy — Oy
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The magnitude of the principal stresses are the abscissas of the
points C' and F (Figure 6) where the circle intersects the o, -axis.
The magnitude of the major principal stress o is always the
greatest absolute value of the abscissa of any of these two points.
Likewise, the magnitude of the minor principal stress o, is always
the lowest absolute value of the abscissa of these two points. As
expected, the ordinates of these two points are zero, corresponding
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to the magnitude of the shear siress components on the principal planes. Altematively, the values of the principal siresses ¢an be found
by

0 = Opay = Ua,vg + R

0y = Opin = Tayg = R
Where the magnitude ofthe average normal stress o, is the abscissa ofthe centre O, given by
Ty = %(arm to,)

and the length of the radius  of th circe (based on the equaton of a circle passing through fwo points), i given by

b= oo+

Finding maximum and minimum shear stresses | ed|

The maximum and minimum shear stresses correspond to the ordinates of the highest and lowest paints on the circle, respactively. These
points are located at the intersection of the circle with the veriial ine passing through the center of the circe, (). Thus, the magnitude of
the maximum and miniimum shear sresses are equal o the value of the circles radius R

Thaxmin = R
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